Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | no2inds.1 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
no2inds.2 | ⊢ ( 𝑦 = 𝑤 → ( 𝜓 ↔ 𝜒 ) ) | ||
no2inds.3 | ⊢ ( 𝑥 = 𝑧 → ( 𝜃 ↔ 𝜒 ) ) | ||
no2inds.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
no2inds.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜏 ↔ 𝜂 ) ) | ||
no2inds.i | ⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) → 𝜑 ) ) | ||
Assertion | no2inds | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | no2inds.1 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | no2inds.2 | ⊢ ( 𝑦 = 𝑤 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | no2inds.3 | ⊢ ( 𝑥 = 𝑧 → ( 𝜃 ↔ 𝜒 ) ) | |
4 | no2inds.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
5 | no2inds.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜏 ↔ 𝜂 ) ) | |
6 | no2inds.i | ⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) → 𝜑 ) ) | |
7 | eqid | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } | |
8 | 7 1 2 3 4 5 6 | no2indslem | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂 ) |