| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nobdaymin |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ≠ ∅ ) → ∃ 𝑤 ∈ 𝐴 ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ) |
| 2 |
1
|
ancoms |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ) → ∃ 𝑤 ∈ 𝐴 ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ) |
| 3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ∃ 𝑤 ∈ 𝐴 ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ) |
| 4 |
|
ssel |
⊢ ( 𝐴 ⊆ No → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ No ) ) |
| 5 |
|
ssel |
⊢ ( 𝐴 ⊆ No → ( 𝑡 ∈ 𝐴 → 𝑡 ∈ No ) ) |
| 6 |
4 5
|
anim12d |
⊢ ( 𝐴 ⊆ No → ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → ( 𝑤 ∈ No ∧ 𝑡 ∈ No ) ) ) |
| 7 |
6
|
imp |
⊢ ( ( 𝐴 ⊆ No ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ) → ( 𝑤 ∈ No ∧ 𝑡 ∈ No ) ) |
| 8 |
7
|
ad2ant2r |
⊢ ( ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) ) → ( 𝑤 ∈ No ∧ 𝑡 ∈ No ) ) |
| 9 |
|
nocvxminlem |
⊢ ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) → ¬ 𝑤 <s 𝑡 ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) ) → ¬ 𝑤 <s 𝑡 ) |
| 11 |
|
an2anr |
⊢ ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) ↔ ( ( 𝑡 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ) ) ) |
| 12 |
|
nocvxminlem |
⊢ ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝑡 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ) ) → ¬ 𝑡 <s 𝑤 ) ) |
| 13 |
11 12
|
biimtrid |
⊢ ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) → ¬ 𝑡 <s 𝑤 ) ) |
| 14 |
13
|
imp |
⊢ ( ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) ) → ¬ 𝑡 <s 𝑤 ) |
| 15 |
|
slttrieq2 |
⊢ ( ( 𝑤 ∈ No ∧ 𝑡 ∈ No ) → ( 𝑤 = 𝑡 ↔ ( ¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤 ) ) ) |
| 16 |
15
|
biimpar |
⊢ ( ( ( 𝑤 ∈ No ∧ 𝑡 ∈ No ) ∧ ( ¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤 ) ) → 𝑤 = 𝑡 ) |
| 17 |
8 10 14 16
|
syl12anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) ) → 𝑤 = 𝑡 ) |
| 18 |
17
|
exp32 |
⊢ ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → ( ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) → 𝑤 = 𝑡 ) ) ) |
| 19 |
18
|
ralrimivv |
⊢ ( ( 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) → 𝑤 = 𝑡 ) ) |
| 20 |
19
|
3adant1 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) → 𝑤 = 𝑡 ) ) |
| 21 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑡 → ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ↔ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) ) |
| 22 |
21
|
reu4 |
⊢ ( ∃! 𝑤 ∈ 𝐴 ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ↔ ( ∃ 𝑤 ∈ 𝐴 ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ∧ ( bday ‘ 𝑡 ) = ∩ ( bday “ 𝐴 ) ) → 𝑤 = 𝑡 ) ) ) |
| 23 |
3 20 22
|
sylanbrc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ No ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦 ) → 𝑧 ∈ 𝐴 ) ) → ∃! 𝑤 ∈ 𝐴 ( bday ‘ 𝑤 ) = ∩ ( bday “ 𝐴 ) ) |