Metamath Proof Explorer


Theorem nocvxmin

Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of Alling p. 185. (Contributed by Scott Fenton, 30-Jun-2011)

Ref Expression
Assertion nocvxmin ( ( 𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ∃! 𝑤𝐴 ( bday 𝑤 ) = ( bday 𝐴 ) )

Proof

Step Hyp Ref Expression
1 nobdaymin ( ( 𝐴 No 𝐴 ≠ ∅ ) → ∃ 𝑤𝐴 ( bday 𝑤 ) = ( bday 𝐴 ) )
2 1 ancoms ( ( 𝐴 ≠ ∅ ∧ 𝐴 No ) → ∃ 𝑤𝐴 ( bday 𝑤 ) = ( bday 𝐴 ) )
3 2 3adant3 ( ( 𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ∃ 𝑤𝐴 ( bday 𝑤 ) = ( bday 𝐴 ) )
4 ssel ( 𝐴 No → ( 𝑤𝐴𝑤 No ) )
5 ssel ( 𝐴 No → ( 𝑡𝐴𝑡 No ) )
6 4 5 anim12d ( 𝐴 No → ( ( 𝑤𝐴𝑡𝐴 ) → ( 𝑤 No 𝑡 No ) ) )
7 6 imp ( ( 𝐴 No ∧ ( 𝑤𝐴𝑡𝐴 ) ) → ( 𝑤 No 𝑡 No ) )
8 7 ad2ant2r ( ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) ∧ ( ( 𝑤𝐴𝑡𝐴 ) ∧ ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) ) ) → ( 𝑤 No 𝑡 No ) )
9 nocvxminlem ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ( ( ( 𝑤𝐴𝑡𝐴 ) ∧ ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) ) → ¬ 𝑤 <s 𝑡 ) )
10 9 imp ( ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) ∧ ( ( 𝑤𝐴𝑡𝐴 ) ∧ ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) ) ) → ¬ 𝑤 <s 𝑡 )
11 an2anr ( ( ( 𝑤𝐴𝑡𝐴 ) ∧ ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) ) ↔ ( ( 𝑡𝐴𝑤𝐴 ) ∧ ( ( bday 𝑡 ) = ( bday 𝐴 ) ∧ ( bday 𝑤 ) = ( bday 𝐴 ) ) ) )
12 nocvxminlem ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ( ( ( 𝑡𝐴𝑤𝐴 ) ∧ ( ( bday 𝑡 ) = ( bday 𝐴 ) ∧ ( bday 𝑤 ) = ( bday 𝐴 ) ) ) → ¬ 𝑡 <s 𝑤 ) )
13 11 12 biimtrid ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ( ( ( 𝑤𝐴𝑡𝐴 ) ∧ ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) ) → ¬ 𝑡 <s 𝑤 ) )
14 13 imp ( ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) ∧ ( ( 𝑤𝐴𝑡𝐴 ) ∧ ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) ) ) → ¬ 𝑡 <s 𝑤 )
15 slttrieq2 ( ( 𝑤 No 𝑡 No ) → ( 𝑤 = 𝑡 ↔ ( ¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤 ) ) )
16 15 biimpar ( ( ( 𝑤 No 𝑡 No ) ∧ ( ¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤 ) ) → 𝑤 = 𝑡 )
17 8 10 14 16 syl12anc ( ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) ∧ ( ( 𝑤𝐴𝑡𝐴 ) ∧ ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) ) ) → 𝑤 = 𝑡 )
18 17 exp32 ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ( ( 𝑤𝐴𝑡𝐴 ) → ( ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) → 𝑤 = 𝑡 ) ) )
19 18 ralrimivv ( ( 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ∀ 𝑤𝐴𝑡𝐴 ( ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) → 𝑤 = 𝑡 ) )
20 19 3adant1 ( ( 𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ∀ 𝑤𝐴𝑡𝐴 ( ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) → 𝑤 = 𝑡 ) )
21 fveqeq2 ( 𝑤 = 𝑡 → ( ( bday 𝑤 ) = ( bday 𝐴 ) ↔ ( bday 𝑡 ) = ( bday 𝐴 ) ) )
22 21 reu4 ( ∃! 𝑤𝐴 ( bday 𝑤 ) = ( bday 𝐴 ) ↔ ( ∃ 𝑤𝐴 ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ∀ 𝑤𝐴𝑡𝐴 ( ( ( bday 𝑤 ) = ( bday 𝐴 ) ∧ ( bday 𝑡 ) = ( bday 𝐴 ) ) → 𝑤 = 𝑡 ) ) )
23 3 20 22 sylanbrc ( ( 𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀ 𝑥𝐴𝑦𝐴𝑧 No ( ( 𝑥 <s 𝑧𝑧 <s 𝑦 ) → 𝑧𝐴 ) ) → ∃! 𝑤𝐴 ( bday 𝑤 ) = ( bday 𝐴 ) )