Step |
Hyp |
Ref |
Expression |
1 |
|
pm3.24 |
⊢ ¬ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) |
2 |
1
|
nex |
⊢ ¬ ∃ 𝑦 ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) |
3 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } ↔ [ 𝑥 / 𝑦 ] ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) ) |
4 |
|
spsbe |
⊢ ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) → ∃ 𝑦 ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) ) |
5 |
3 4
|
sylbi |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } → ∃ 𝑦 ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) ) |
6 |
2 5
|
mto |
⊢ ¬ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } |
7 |
|
df-nul |
⊢ ∅ = ( V ∖ V ) |
8 |
|
df-dif |
⊢ ( V ∖ V ) = { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } |
9 |
7 8
|
eqtri |
⊢ ∅ = { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } |
10 |
9
|
eleq2i |
⊢ ( 𝑥 ∈ ∅ ↔ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ V ) } ) |
11 |
6 10
|
mtbir |
⊢ ¬ 𝑥 ∈ ∅ |
12 |
11
|
intnan |
⊢ ¬ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ ∅ ) |
13 |
12
|
nex |
⊢ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ ∅ ) |
14 |
|
dfclel |
⊢ ( 𝐴 ∈ ∅ ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ ∅ ) ) |
15 |
13 14
|
mtbir |
⊢ ¬ 𝐴 ∈ ∅ |