| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noetainflem.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 2 |
|
noetainflem.2 |
⊢ 𝑊 = ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
| 3 |
2
|
reseq1i |
⊢ ( 𝑊 ↾ dom 𝑇 ) = ( ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ↾ dom 𝑇 ) |
| 4 |
|
resundir |
⊢ ( ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ↾ dom 𝑇 ) = ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) |
| 5 |
3 4
|
eqtri |
⊢ ( 𝑊 ↾ dom 𝑇 ) = ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) |
| 6 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑇 ∈ No ) |
| 7 |
|
nofun |
⊢ ( 𝑇 ∈ No → Fun 𝑇 ) |
| 8 |
|
funrel |
⊢ ( Fun 𝑇 → Rel 𝑇 ) |
| 9 |
|
resdm |
⊢ ( Rel 𝑇 → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 ) |
| 10 |
6 7 8 9
|
4syl |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 ) |
| 11 |
|
dmres |
⊢ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ( dom 𝑇 ∩ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
| 12 |
|
2oex |
⊢ 2o ∈ V |
| 13 |
12
|
snnz |
⊢ { 2o } ≠ ∅ |
| 14 |
|
dmxp |
⊢ ( { 2o } ≠ ∅ → dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) = ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) ) |
| 15 |
13 14
|
ax-mp |
⊢ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) = ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) |
| 16 |
15
|
ineq2i |
⊢ ( dom 𝑇 ∩ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) = ( dom 𝑇 ∩ ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) ) |
| 17 |
|
disjdif |
⊢ ( dom 𝑇 ∩ ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) ) = ∅ |
| 18 |
16 17
|
eqtri |
⊢ ( dom 𝑇 ∩ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) = ∅ |
| 19 |
11 18
|
eqtri |
⊢ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ |
| 20 |
|
relres |
⊢ Rel ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) |
| 21 |
|
reldm0 |
⊢ ( Rel ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) → ( ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ↔ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ) ) |
| 22 |
20 21
|
ax-mp |
⊢ ( ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ↔ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ) |
| 23 |
19 22
|
mpbir |
⊢ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ |
| 24 |
23
|
a1i |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ) |
| 25 |
10 24
|
uneq12d |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) = ( 𝑇 ∪ ∅ ) ) |
| 26 |
|
un0 |
⊢ ( 𝑇 ∪ ∅ ) = 𝑇 |
| 27 |
25 26
|
eqtrdi |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) = 𝑇 ) |
| 28 |
5 27
|
eqtrid |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |