| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noetalem1.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 2 |
|
noetalem1.2 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 3 |
|
noetalem1.3 |
⊢ 𝑍 = ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
| 4 |
|
noetalem1.4 |
⊢ 𝑊 = ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
| 5 |
2
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑇 ∈ No ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → 𝑇 ∈ No ) |
| 7 |
|
nodmord |
⊢ ( 𝑇 ∈ No → Ord dom 𝑇 ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → Ord dom 𝑇 ) |
| 9 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → 𝑆 ∈ No ) |
| 11 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → Ord dom 𝑆 ) |
| 13 |
|
ordtri2or2 |
⊢ ( ( Ord dom 𝑇 ∧ Ord dom 𝑆 ) → ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) ) |
| 14 |
8 12 13
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) ) |
| 15 |
|
ssequn2 |
⊢ ( dom 𝑇 ⊆ dom 𝑆 ↔ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) |
| 16 |
|
ssequn1 |
⊢ ( dom 𝑆 ⊆ dom 𝑇 ↔ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) |
| 17 |
15 16
|
orbi12i |
⊢ ( ( dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇 ) ↔ ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) ) |
| 18 |
14 17
|
sylib |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) ) |
| 19 |
18
|
3adant3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) ) |
| 20 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐴 ⊆ No ) |
| 21 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 22 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ V ) |
| 23 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
| 24 |
1 3
|
noetasuplem3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s 𝑍 ) |
| 25 |
20 21 22 23 24
|
syl31anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s 𝑍 ) |
| 26 |
25
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
| 27 |
26
|
3adant3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
| 28 |
1 3
|
noetasuplem4 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |
| 29 |
27 28
|
jca |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
| 31 |
|
simp1l |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝐴 ⊆ No ) |
| 32 |
|
simp1r |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝐴 ∈ V ) |
| 33 |
|
simp2r |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝐵 ∈ V ) |
| 34 |
1 3
|
noetasuplem1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 ∈ No ) |
| 35 |
31 32 33 34
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → 𝑍 ∈ No ) |
| 36 |
1 2
|
nosupinfsep |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑍 ∈ No ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
| 37 |
35 36
|
syld3an3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
| 39 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) |
| 40 |
39
|
reseq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = ( 𝑍 ↾ dom 𝑆 ) ) |
| 41 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐴 ⊆ No ) |
| 42 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐴 ∈ V ) |
| 43 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → 𝐵 ∈ V ) |
| 44 |
1 3
|
noetasuplem2 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |
| 45 |
41 42 43 44
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |
| 46 |
40 45
|
eqtrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = 𝑆 ) |
| 47 |
46
|
breq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ 𝑎 <s 𝑆 ) ) |
| 48 |
47
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ) ) |
| 49 |
46
|
breq1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ 𝑆 <s 𝑏 ) ) |
| 50 |
49
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) |
| 51 |
48 50
|
anbi12d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
| 52 |
51
|
3adantl3 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑍 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
| 53 |
38 52
|
bitrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
| 54 |
30 53
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) |
| 55 |
54
|
ex |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ) ) |
| 56 |
2 4
|
noetainflem4 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ) |
| 57 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ V ) |
| 58 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ⊆ No ) |
| 59 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ V ) |
| 60 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 61 |
2 4
|
noetainflem3 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑏 ∈ 𝐵 ) → 𝑊 <s 𝑏 ) |
| 62 |
57 58 59 60 61
|
syl31anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑊 <s 𝑏 ) |
| 63 |
62
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) |
| 64 |
63
|
3adant3 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) |
| 65 |
56 64
|
jca |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ) |
| 67 |
|
simpl1 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
| 68 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐵 ⊆ No ) |
| 69 |
|
simpl2r |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐵 ∈ V ) |
| 70 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝐴 ∈ V ) |
| 71 |
2 4
|
noetainflem1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑊 ∈ No ) |
| 72 |
70 68 69 71
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → 𝑊 ∈ No ) |
| 73 |
1 2
|
nosupinfsep |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑊 ∈ No ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
| 74 |
67 68 69 72 73
|
syl121anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ) ) |
| 75 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) |
| 76 |
75
|
reseq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = ( 𝑊 ↾ dom 𝑇 ) ) |
| 77 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) |
| 78 |
2 4
|
noetainflem2 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |
| 80 |
76 79
|
eqtrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) = 𝑇 ) |
| 81 |
80
|
breq2d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ 𝑎 <s 𝑇 ) ) |
| 82 |
81
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ) ) |
| 83 |
80
|
breq1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ 𝑇 <s 𝑏 ) ) |
| 84 |
83
|
ralbidv |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) |
| 85 |
82 84
|
anbi12d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
| 86 |
85
|
3adantl3 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑊 ↾ ( dom 𝑆 ∪ dom 𝑇 ) ) <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
| 87 |
74 86
|
bitrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀ 𝑏 ∈ 𝐵 𝑊 <s 𝑏 ) ↔ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
| 88 |
66 87
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) |
| 89 |
88
|
ex |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
| 90 |
55 89
|
orim12d |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑆 ∨ ( dom 𝑆 ∪ dom 𝑇 ) = dom 𝑇 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) ) |
| 91 |
19 90
|
mpd |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
| 92 |
91
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) ) |
| 93 |
|
simpll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
| 94 |
|
simprl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → 𝑂 ∈ On ) |
| 95 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 96 |
|
imass2 |
⊢ ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → ( bday “ 𝐴 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) |
| 97 |
95 96
|
ax-mp |
⊢ ( bday “ 𝐴 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) |
| 98 |
|
simprr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) |
| 99 |
97 98
|
sstrid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday “ 𝐴 ) ⊆ 𝑂 ) |
| 100 |
1
|
nosupbday |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑆 ) ⊆ 𝑂 ) |
| 101 |
93 94 99 100
|
syl12anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑆 ) ⊆ 𝑂 ) |
| 102 |
101
|
a1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) |
| 103 |
102
|
ancld |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ) |
| 104 |
|
df-3an |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ↔ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) |
| 105 |
103 104
|
imbitrrdi |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ) |
| 106 |
93 9
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → 𝑆 ∈ No ) |
| 107 |
105 106
|
jctild |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) → ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ) ) |
| 108 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) |
| 109 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 110 |
|
imass2 |
⊢ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → ( bday “ 𝐵 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) |
| 111 |
109 110
|
ax-mp |
⊢ ( bday “ 𝐵 ) ⊆ ( bday “ ( 𝐴 ∪ 𝐵 ) ) |
| 112 |
111 98
|
sstrid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday “ 𝐵 ) ⊆ 𝑂 ) |
| 113 |
2
|
noinfbday |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐵 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑇 ) ⊆ 𝑂 ) |
| 114 |
108 94 112 113
|
syl12anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑇 ) ⊆ 𝑂 ) |
| 115 |
114
|
a1d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) |
| 116 |
115
|
ancld |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) |
| 117 |
|
df-3an |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ↔ ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) |
| 118 |
116 117
|
imbitrrdi |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) |
| 119 |
108 5
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → 𝑇 ∈ No ) |
| 120 |
118 119
|
jctild |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) → ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) |
| 121 |
107 120
|
orim12d |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) → ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) ) |
| 122 |
121
|
3adantl3 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ) ∨ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ) ) → ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) ) |
| 123 |
92 122
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑂 ) ) → ( ( 𝑆 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀ 𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘ 𝑆 ) ⊆ 𝑂 ) ) ∨ ( 𝑇 ∈ No ∧ ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀ 𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘ 𝑇 ) ⊆ 𝑂 ) ) ) ) |