| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noetasuplem.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 2 |
|
noetasuplem.2 |
⊢ 𝑍 = ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
| 3 |
|
ralcom |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 ) |
| 4 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ⊆ No ) |
| 5 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ V ) |
| 6 |
|
simprl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → 𝐵 ⊆ No ) |
| 7 |
6
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
| 8 |
1
|
nosupbnd2 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑏 ∈ No ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) |
| 9 |
4 5 7 8
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) → 𝑏 ∈ 𝐵 ) |
| 11 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
| 12 |
6 10 11
|
syl2an |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝑏 ∈ No ) |
| 13 |
|
nodmord |
⊢ ( 𝑏 ∈ No → Ord dom 𝑏 ) |
| 14 |
|
ordirr |
⊢ ( Ord dom 𝑏 → ¬ dom 𝑏 ∈ dom 𝑏 ) |
| 15 |
12 13 14
|
3syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ¬ dom 𝑏 ∈ dom 𝑏 ) |
| 16 |
|
ssun2 |
⊢ suc ∪ ( bday “ 𝐵 ) ⊆ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) |
| 17 |
|
bdayval |
⊢ ( 𝑏 ∈ No → ( bday ‘ 𝑏 ) = dom 𝑏 ) |
| 18 |
12 17
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( bday ‘ 𝑏 ) = dom 𝑏 ) |
| 19 |
|
bdayfo |
⊢ bday : No –onto→ On |
| 20 |
|
fofn |
⊢ ( bday : No –onto→ On → bday Fn No ) |
| 21 |
19 20
|
ax-mp |
⊢ bday Fn No |
| 22 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ 𝐵 ⊆ No ∧ 𝑏 ∈ 𝐵 ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
| 23 |
21 22
|
mp3an1 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝑏 ∈ 𝐵 ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
| 24 |
6 10 23
|
syl2an |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
| 25 |
18 24
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ∈ ( bday “ 𝐵 ) ) |
| 26 |
|
elssuni |
⊢ ( dom 𝑏 ∈ ( bday “ 𝐵 ) → dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ) |
| 28 |
|
nodmon |
⊢ ( 𝑏 ∈ No → dom 𝑏 ∈ On ) |
| 29 |
|
imassrn |
⊢ ( bday “ 𝐵 ) ⊆ ran bday |
| 30 |
|
forn |
⊢ ( bday : No –onto→ On → ran bday = On ) |
| 31 |
19 30
|
ax-mp |
⊢ ran bday = On |
| 32 |
29 31
|
sseqtri |
⊢ ( bday “ 𝐵 ) ⊆ On |
| 33 |
|
ssorduni |
⊢ ( ( bday “ 𝐵 ) ⊆ On → Ord ∪ ( bday “ 𝐵 ) ) |
| 34 |
32 33
|
ax-mp |
⊢ Ord ∪ ( bday “ 𝐵 ) |
| 35 |
|
ordsssuc |
⊢ ( ( dom 𝑏 ∈ On ∧ Ord ∪ ( bday “ 𝐵 ) ) → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
| 36 |
34 35
|
mpan2 |
⊢ ( dom 𝑏 ∈ On → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
| 37 |
12 28 36
|
3syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
| 38 |
27 37
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) |
| 39 |
16 38
|
sselid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ∈ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) ) |
| 40 |
|
eleq2 |
⊢ ( ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 → ( dom 𝑏 ∈ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) ↔ dom 𝑏 ∈ dom 𝑏 ) ) |
| 41 |
39 40
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 → dom 𝑏 ∈ dom 𝑏 ) ) |
| 42 |
15 41
|
mtod |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ¬ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 ) |
| 43 |
2
|
dmeqi |
⊢ dom 𝑍 = dom ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
| 44 |
|
dmun |
⊢ dom ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) = ( dom 𝑆 ∪ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
| 45 |
43 44
|
eqtri |
⊢ dom 𝑍 = ( dom 𝑆 ∪ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
| 46 |
|
1oex |
⊢ 1o ∈ V |
| 47 |
46
|
snnz |
⊢ { 1o } ≠ ∅ |
| 48 |
|
dmxp |
⊢ ( { 1o } ≠ ∅ → dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) = ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
| 49 |
47 48
|
ax-mp |
⊢ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) = ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) |
| 50 |
49
|
uneq2i |
⊢ ( dom 𝑆 ∪ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) = ( dom 𝑆 ∪ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
| 51 |
|
undif2 |
⊢ ( dom 𝑆 ∪ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) |
| 52 |
45 50 51
|
3eqtri |
⊢ dom 𝑍 = ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) |
| 53 |
|
dmeq |
⊢ ( 𝑍 = 𝑏 → dom 𝑍 = dom 𝑏 ) |
| 54 |
52 53
|
eqtr3id |
⊢ ( 𝑍 = 𝑏 → ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 ) |
| 55 |
42 54
|
nsyl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ¬ 𝑍 = 𝑏 ) |
| 56 |
|
df-ne |
⊢ ( 𝑍 ≠ 𝑏 ↔ ¬ 𝑍 = 𝑏 ) |
| 57 |
|
notnotr |
⊢ ( ¬ ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ) |
| 58 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) |
| 59 |
58
|
fvresd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 60 |
2
|
reseq1i |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) |
| 61 |
|
resundir |
⊢ ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) |
| 62 |
|
df-res |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) |
| 63 |
|
disjdifr |
⊢ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∩ dom 𝑆 ) = ∅ |
| 64 |
|
xpdisj1 |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∩ dom 𝑆 ) = ∅ → ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) = ∅ ) |
| 65 |
63 64
|
ax-mp |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) = ∅ |
| 66 |
62 65
|
eqtri |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ |
| 67 |
66
|
uneq2i |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) |
| 68 |
|
un0 |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) = ( 𝑆 ↾ dom 𝑆 ) |
| 69 |
67 68
|
eqtri |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) = ( 𝑆 ↾ dom 𝑆 ) |
| 70 |
60 61 69
|
3eqtri |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( 𝑆 ↾ dom 𝑆 ) |
| 71 |
|
simplll |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
| 72 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
| 73 |
71 72
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑆 ∈ No ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑆 ∈ No ) |
| 75 |
|
nofun |
⊢ ( 𝑆 ∈ No → Fun 𝑆 ) |
| 76 |
74 75
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → Fun 𝑆 ) |
| 77 |
|
funrel |
⊢ ( Fun 𝑆 → Rel 𝑆 ) |
| 78 |
|
resdm |
⊢ ( Rel 𝑆 → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
| 79 |
76 77 78
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
| 80 |
70 79
|
eqtrid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |
| 81 |
80
|
fveq1d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 82 |
59 81
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 83 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐴 ⊆ No ) |
| 84 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐴 ∈ V ) |
| 85 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝐵 ∈ V ) |
| 86 |
85
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐵 ∈ V ) |
| 87 |
1 2
|
noetasuplem1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 ∈ No ) |
| 88 |
83 84 86 87
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑍 ∈ No ) |
| 89 |
88
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑍 ∈ No ) |
| 90 |
12
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑏 ∈ No ) |
| 91 |
90
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑏 ∈ No ) |
| 92 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑍 ≠ 𝑏 ) |
| 93 |
|
nosepne |
⊢ ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ 𝑍 ≠ 𝑏 ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 94 |
89 91 92 93
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 95 |
82 94
|
eqnetrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 96 |
58
|
fvresd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 97 |
95 96
|
neeqtrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 99 |
|
fveq2 |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( 𝑆 ‘ 𝑞 ) = ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 100 |
98 99
|
neeq12d |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) ≠ ( 𝑆 ‘ 𝑞 ) ↔ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) ) |
| 101 |
|
df-ne |
⊢ ( ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) ≠ ( 𝑆 ‘ 𝑞 ) ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
| 102 |
|
necom |
⊢ ( ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ↔ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 103 |
100 101 102
|
3bitr3g |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ↔ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) ) |
| 104 |
103
|
rspcev |
⊢ ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ∧ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) → ∃ 𝑞 ∈ dom 𝑆 ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
| 105 |
58 97 104
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ∃ 𝑞 ∈ dom 𝑆 ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
| 106 |
|
rexeq |
⊢ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ( ∃ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ↔ ∃ 𝑞 ∈ dom 𝑆 ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
| 107 |
105 106
|
syl5ibrcom |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ∃ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
| 108 |
|
rexnal |
⊢ ( ∃ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ↔ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
| 109 |
107 108
|
imbitrdi |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
| 110 |
57 109
|
syl5 |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ¬ ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
| 111 |
110
|
orrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
| 112 |
|
nofun |
⊢ ( 𝑏 ∈ No → Fun 𝑏 ) |
| 113 |
|
funres |
⊢ ( Fun 𝑏 → Fun ( 𝑏 ↾ dom 𝑆 ) ) |
| 114 |
91 112 113
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → Fun ( 𝑏 ↾ dom 𝑆 ) ) |
| 115 |
|
eqfunfv |
⊢ ( ( Fun ( 𝑏 ↾ dom 𝑆 ) ∧ Fun 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ↔ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) ) |
| 116 |
114 76 115
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ↔ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) ) |
| 117 |
|
ianor |
⊢ ( ¬ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ↔ ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
| 118 |
117
|
con1bii |
⊢ ( ¬ ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ↔ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
| 119 |
116 118
|
bitr4di |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ↔ ¬ ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) ) |
| 120 |
119
|
con2bid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ) ) |
| 121 |
111 120
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ¬ ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ) |
| 122 |
121
|
pm2.21d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 → 𝑍 <s 𝑏 ) ) |
| 123 |
80
|
breq1d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑏 ↾ dom 𝑆 ) ↔ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) |
| 124 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
| 125 |
74 124
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → dom 𝑆 ∈ On ) |
| 126 |
|
sltres |
⊢ ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ dom 𝑆 ∈ On ) → ( ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑏 ↾ dom 𝑆 ) → 𝑍 <s 𝑏 ) ) |
| 127 |
89 91 125 126
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑏 ↾ dom 𝑆 ) → 𝑍 <s 𝑏 ) ) |
| 128 |
123 127
|
sylbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) → 𝑍 <s 𝑏 ) ) |
| 129 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) |
| 130 |
129
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) |
| 131 |
|
noreson |
⊢ ( ( 𝑏 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑏 ↾ dom 𝑆 ) ∈ No ) |
| 132 |
91 125 131
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑏 ↾ dom 𝑆 ) ∈ No ) |
| 133 |
|
sltso |
⊢ <s Or No |
| 134 |
|
sotric |
⊢ ( ( <s Or No ∧ ( ( 𝑏 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) ) → ( ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) ) |
| 135 |
133 134
|
mpan |
⊢ ( ( ( 𝑏 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) → ( ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) ) |
| 136 |
132 74 135
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) ) |
| 137 |
136
|
con2bid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) |
| 138 |
130 137
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) |
| 139 |
122 128 138
|
mpjaod |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑍 <s 𝑏 ) |
| 140 |
88
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑍 ∈ No ) |
| 141 |
90
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑏 ∈ No ) |
| 142 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑍 ≠ 𝑏 ) |
| 143 |
2
|
fveq1i |
⊢ ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
| 144 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
| 145 |
144 72 75
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → Fun 𝑆 ) |
| 146 |
|
funfn |
⊢ ( Fun 𝑆 ↔ 𝑆 Fn dom 𝑆 ) |
| 147 |
145 146
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑆 Fn dom 𝑆 ) |
| 148 |
46
|
fconst |
⊢ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) : ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ⟶ { 1o } |
| 149 |
|
ffn |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) : ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ⟶ { 1o } → ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
| 150 |
148 149
|
ax-mp |
⊢ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) |
| 151 |
150
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
| 152 |
|
disjdif |
⊢ ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ∅ |
| 153 |
152
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ∅ ) |
| 154 |
|
necom |
⊢ ( ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) ↔ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) ) |
| 155 |
154
|
rabbii |
⊢ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } = { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } |
| 156 |
155
|
inteqi |
⊢ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } = ∩ { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } |
| 157 |
142
|
necomd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑏 ≠ 𝑍 ) |
| 158 |
|
nosepssdm |
⊢ ( ( 𝑏 ∈ No ∧ 𝑍 ∈ No ∧ 𝑏 ≠ 𝑍 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } ⊆ dom 𝑏 ) |
| 159 |
141 140 157 158
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } ⊆ dom 𝑏 ) |
| 160 |
156 159
|
eqsstrid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ) |
| 161 |
141 17
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( bday ‘ 𝑏 ) = dom 𝑏 ) |
| 162 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝐵 ⊆ No ) |
| 163 |
162
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐵 ⊆ No ) |
| 164 |
163
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝐵 ⊆ No ) |
| 165 |
|
simplrl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑏 ∈ 𝐵 ) |
| 166 |
165
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑏 ∈ 𝐵 ) |
| 167 |
164 166 23
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
| 168 |
161 167
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑏 ∈ ( bday “ 𝐵 ) ) |
| 169 |
168 26
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ) |
| 170 |
141 28 36
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
| 171 |
169 170
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) |
| 172 |
|
nosepon |
⊢ ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ 𝑍 ≠ 𝑏 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) |
| 173 |
140 141 142 172
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) |
| 174 |
|
eloni |
⊢ ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On → Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
| 175 |
|
ordsuc |
⊢ ( Ord ∪ ( bday “ 𝐵 ) ↔ Ord suc ∪ ( bday “ 𝐵 ) ) |
| 176 |
34 175
|
mpbi |
⊢ Ord suc ∪ ( bday “ 𝐵 ) |
| 177 |
|
ordtr2 |
⊢ ( ( Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∧ Ord suc ∪ ( bday “ 𝐵 ) ) → ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
| 178 |
176 177
|
mpan2 |
⊢ ( Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
| 179 |
173 174 178
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
| 180 |
160 171 179
|
mp2and |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) |
| 181 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
| 182 |
144 72 124
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑆 ∈ On ) |
| 183 |
|
ontri1 |
⊢ ( ( dom 𝑆 ∈ On ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) → ( dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ↔ ¬ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) ) |
| 184 |
182 173 183
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ↔ ¬ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) ) |
| 185 |
181 184
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ¬ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) |
| 186 |
180 185
|
eldifd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
| 187 |
|
fvun2 |
⊢ ( ( 𝑆 Fn dom 𝑆 ∧ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∧ ( ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ∅ ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) ) → ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 188 |
147 151 153 186 187
|
syl112anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 189 |
143 188
|
eqtrid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 190 |
46
|
fvconst2 |
⊢ ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) → ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) |
| 191 |
186 190
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) |
| 192 |
189 191
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) |
| 193 |
|
nosep1o |
⊢ ( ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ 𝑍 ≠ 𝑏 ) ∧ ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) → 𝑍 <s 𝑏 ) |
| 194 |
140 141 142 192 193
|
syl31anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑍 <s 𝑏 ) |
| 195 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑍 ≠ 𝑏 ) |
| 196 |
88 90 195 172
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) |
| 197 |
196 174
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
| 198 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
| 199 |
71 72 198
|
3syl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → Ord dom 𝑆 ) |
| 200 |
|
ordtri2or |
⊢ ( ( Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∧ Ord dom 𝑆 ) → ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ∨ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 201 |
197 199 200
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ∨ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
| 202 |
139 194 201
|
mpjaodan |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑍 <s 𝑏 ) |
| 203 |
202
|
ex |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( 𝑍 ≠ 𝑏 → 𝑍 <s 𝑏 ) ) |
| 204 |
56 203
|
biimtrrid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( ¬ 𝑍 = 𝑏 → 𝑍 <s 𝑏 ) ) |
| 205 |
55 204
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝑍 <s 𝑏 ) |
| 206 |
205
|
expr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 → 𝑍 <s 𝑏 ) ) |
| 207 |
9 206
|
sylbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 → 𝑍 <s 𝑏 ) ) |
| 208 |
207
|
ralimdva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( ∀ 𝑏 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
| 209 |
3 208
|
biimtrid |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
| 210 |
209
|
3impia |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |