| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmres |
⊢ dom ( 𝐴 ↾ suc 𝑋 ) = ( suc 𝑋 ∩ dom 𝐴 ) |
| 2 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝐴 ∈ No ) |
| 3 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
| 4 |
2 3
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Ord dom 𝐴 ) |
| 5 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐴 → ( 𝐴 ‘ 𝑋 ) = ∅ ) |
| 6 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 7 |
6
|
necomi |
⊢ ∅ ≠ 1o |
| 8 |
|
neeq1 |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ∅ → ( ( 𝐴 ‘ 𝑋 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
| 9 |
7 8
|
mpbiri |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ∅ → ( 𝐴 ‘ 𝑋 ) ≠ 1o ) |
| 10 |
9
|
neneqd |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ∅ → ¬ ( 𝐴 ‘ 𝑋 ) = 1o ) |
| 11 |
5 10
|
syl |
⊢ ( ¬ 𝑋 ∈ dom 𝐴 → ¬ ( 𝐴 ‘ 𝑋 ) = 1o ) |
| 12 |
11
|
con4i |
⊢ ( ( 𝐴 ‘ 𝑋 ) = 1o → 𝑋 ∈ dom 𝐴 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) → 𝑋 ∈ dom 𝐴 ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝑋 ∈ dom 𝐴 ) |
| 15 |
|
ordsucss |
⊢ ( Ord dom 𝐴 → ( 𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴 ) ) |
| 16 |
4 14 15
|
sylc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → suc 𝑋 ⊆ dom 𝐴 ) |
| 17 |
|
dfss2 |
⊢ ( suc 𝑋 ⊆ dom 𝐴 ↔ ( suc 𝑋 ∩ dom 𝐴 ) = suc 𝑋 ) |
| 18 |
16 17
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( suc 𝑋 ∩ dom 𝐴 ) = suc 𝑋 ) |
| 19 |
1 18
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → dom ( 𝐴 ↾ suc 𝑋 ) = suc 𝑋 ) |
| 20 |
|
dmres |
⊢ dom ( 𝐵 ↾ suc 𝑋 ) = ( suc 𝑋 ∩ dom 𝐵 ) |
| 21 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝐵 ∈ No ) |
| 22 |
|
nodmord |
⊢ ( 𝐵 ∈ No → Ord dom 𝐵 ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Ord dom 𝐵 ) |
| 24 |
|
nogesgn1o |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐵 ‘ 𝑋 ) = 1o ) |
| 25 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐵 → ( 𝐵 ‘ 𝑋 ) = ∅ ) |
| 26 |
|
neeq1 |
⊢ ( ( 𝐵 ‘ 𝑋 ) = ∅ → ( ( 𝐵 ‘ 𝑋 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
| 27 |
7 26
|
mpbiri |
⊢ ( ( 𝐵 ‘ 𝑋 ) = ∅ → ( 𝐵 ‘ 𝑋 ) ≠ 1o ) |
| 28 |
27
|
neneqd |
⊢ ( ( 𝐵 ‘ 𝑋 ) = ∅ → ¬ ( 𝐵 ‘ 𝑋 ) = 1o ) |
| 29 |
25 28
|
syl |
⊢ ( ¬ 𝑋 ∈ dom 𝐵 → ¬ ( 𝐵 ‘ 𝑋 ) = 1o ) |
| 30 |
29
|
con4i |
⊢ ( ( 𝐵 ‘ 𝑋 ) = 1o → 𝑋 ∈ dom 𝐵 ) |
| 31 |
24 30
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝑋 ∈ dom 𝐵 ) |
| 32 |
|
ordsucss |
⊢ ( Ord dom 𝐵 → ( 𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵 ) ) |
| 33 |
23 31 32
|
sylc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → suc 𝑋 ⊆ dom 𝐵 ) |
| 34 |
|
dfss2 |
⊢ ( suc 𝑋 ⊆ dom 𝐵 ↔ ( suc 𝑋 ∩ dom 𝐵 ) = suc 𝑋 ) |
| 35 |
33 34
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( suc 𝑋 ∩ dom 𝐵 ) = suc 𝑋 ) |
| 36 |
20 35
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → dom ( 𝐵 ↾ suc 𝑋 ) = suc 𝑋 ) |
| 37 |
19 36
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ) |
| 38 |
19
|
eleq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ↔ 𝑥 ∈ suc 𝑋 ) ) |
| 39 |
|
vex |
⊢ 𝑥 ∈ V |
| 40 |
39
|
elsuc |
⊢ ( 𝑥 ∈ suc 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) |
| 41 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
| 42 |
41
|
fveq1d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) |
| 43 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 44 |
43
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 45 |
43
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 46 |
42 44 45
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 47 |
46
|
ex |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 48 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐴 ‘ 𝑋 ) = 1o ) |
| 49 |
48 24
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑋 ) ) |
| 52 |
50 51
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
| 53 |
49 52
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 54 |
47 53
|
jaod |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 55 |
40 54
|
biimtrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ suc 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 57 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → 𝑥 ∈ suc 𝑋 ) |
| 58 |
57
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 59 |
57
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 60 |
56 58 59
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) |
| 61 |
60
|
ex |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ suc 𝑋 → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) |
| 62 |
38 61
|
sylbid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) |
| 63 |
62
|
ralrimiv |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) |
| 64 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
| 65 |
2 64
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun 𝐴 ) |
| 66 |
65
|
funresd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun ( 𝐴 ↾ suc 𝑋 ) ) |
| 67 |
|
nofun |
⊢ ( 𝐵 ∈ No → Fun 𝐵 ) |
| 68 |
21 67
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun 𝐵 ) |
| 69 |
68
|
funresd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun ( 𝐵 ↾ suc 𝑋 ) ) |
| 70 |
|
eqfunfv |
⊢ ( ( Fun ( 𝐴 ↾ suc 𝑋 ) ∧ Fun ( 𝐵 ↾ suc 𝑋 ) ) → ( ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ↔ ( dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) ) |
| 71 |
66 69 70
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ↔ ( dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) ) |
| 72 |
37 63 71
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ) |