| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noinfbnd1.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 2 |
|
simp3rl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → 𝑊 ∈ 𝐵 ) |
| 3 |
1
|
noinfbnd1lem1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑊 ∈ 𝐵 ) → ¬ ( 𝑊 ↾ dom 𝑇 ) <s 𝑇 ) |
| 4 |
2 3
|
syld3an3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ¬ ( 𝑊 ↾ dom 𝑇 ) <s 𝑇 ) |
| 5 |
|
simp3rr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ¬ 𝑈 <s 𝑊 ) |
| 6 |
|
simp2l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → 𝐵 ⊆ No ) |
| 7 |
|
simp3ll |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → 𝑈 ∈ 𝐵 ) |
| 8 |
6 7
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → 𝑈 ∈ No ) |
| 9 |
6 2
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → 𝑊 ∈ No ) |
| 10 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) → 𝑇 ∈ No ) |
| 11 |
10
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → 𝑇 ∈ No ) |
| 12 |
|
nodmon |
⊢ ( 𝑇 ∈ No → dom 𝑇 ∈ On ) |
| 13 |
11 12
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → dom 𝑇 ∈ On ) |
| 14 |
|
sltres |
⊢ ( ( 𝑈 ∈ No ∧ 𝑊 ∈ No ∧ dom 𝑇 ∈ On ) → ( ( 𝑈 ↾ dom 𝑇 ) <s ( 𝑊 ↾ dom 𝑇 ) → 𝑈 <s 𝑊 ) ) |
| 15 |
8 9 13 14
|
syl3anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ( ( 𝑈 ↾ dom 𝑇 ) <s ( 𝑊 ↾ dom 𝑇 ) → 𝑈 <s 𝑊 ) ) |
| 16 |
5 15
|
mtod |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ¬ ( 𝑈 ↾ dom 𝑇 ) <s ( 𝑊 ↾ dom 𝑇 ) ) |
| 17 |
|
simp3lr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) |
| 18 |
17
|
breq1d |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ( ( 𝑈 ↾ dom 𝑇 ) <s ( 𝑊 ↾ dom 𝑇 ) ↔ 𝑇 <s ( 𝑊 ↾ dom 𝑇 ) ) ) |
| 19 |
16 18
|
mtbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ¬ 𝑇 <s ( 𝑊 ↾ dom 𝑇 ) ) |
| 20 |
|
noreson |
⊢ ( ( 𝑊 ∈ No ∧ dom 𝑇 ∈ On ) → ( 𝑊 ↾ dom 𝑇 ) ∈ No ) |
| 21 |
9 13 20
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ( 𝑊 ↾ dom 𝑇 ) ∈ No ) |
| 22 |
|
sltso |
⊢ <s Or No |
| 23 |
|
sotrieq2 |
⊢ ( ( <s Or No ∧ ( ( 𝑊 ↾ dom 𝑇 ) ∈ No ∧ 𝑇 ∈ No ) ) → ( ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ↔ ( ¬ ( 𝑊 ↾ dom 𝑇 ) <s 𝑇 ∧ ¬ 𝑇 <s ( 𝑊 ↾ dom 𝑇 ) ) ) ) |
| 24 |
22 23
|
mpan |
⊢ ( ( ( 𝑊 ↾ dom 𝑇 ) ∈ No ∧ 𝑇 ∈ No ) → ( ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ↔ ( ¬ ( 𝑊 ↾ dom 𝑇 ) <s 𝑇 ∧ ¬ 𝑇 <s ( 𝑊 ↾ dom 𝑇 ) ) ) ) |
| 25 |
21 11 24
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ( ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ↔ ( ¬ ( 𝑊 ↾ dom 𝑇 ) <s 𝑇 ∧ ¬ 𝑇 <s ( 𝑊 ↾ dom 𝑇 ) ) ) ) |
| 26 |
4 19 25
|
mpbir2and |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊 ) ) ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |