| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
⊢ ( 𝑏 = 𝑈 → ( 𝑍 <s 𝑏 ↔ 𝑍 <s 𝑈 ) ) |
| 2 |
|
simp3 |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |
| 3 |
|
simp1l |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → 𝑈 ∈ 𝐵 ) |
| 4 |
1 2 3
|
rspcdva |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → 𝑍 <s 𝑈 ) |
| 5 |
|
simpl21 |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝐵 ⊆ No ) |
| 6 |
|
simpl1l |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝑈 ∈ 𝐵 ) |
| 7 |
5 6
|
sseldd |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝑈 ∈ No ) |
| 8 |
|
nodmon |
⊢ ( 𝑈 ∈ No → dom 𝑈 ∈ On ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → dom 𝑈 ∈ On ) |
| 10 |
|
onelon |
⊢ ( ( dom 𝑈 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
| 11 |
9 10
|
sylan |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
| 12 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) |
| 13 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) |
| 14 |
9
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → dom 𝑈 ∈ On ) |
| 15 |
14
|
adantr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → dom 𝑈 ∈ On ) |
| 16 |
|
ontr1 |
⊢ ( dom 𝑈 ∈ On → ( ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) ) |
| 18 |
12 13 17
|
mp2and |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ dom 𝑈 ) |
| 19 |
18
|
fvresd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 20 |
|
onelon |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ On ) |
| 21 |
11 20
|
sylan |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ On ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑈 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑍 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 24 |
22 23
|
neeq12d |
⊢ ( 𝑥 = 𝑞 → ( ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) ↔ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) ) |
| 25 |
24
|
onnminsb |
⊢ ( 𝑞 ∈ On → ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) ) |
| 26 |
21 12 25
|
sylc |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 27 |
|
df-ne |
⊢ ( ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 28 |
27
|
con2bii |
⊢ ( ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 29 |
26 28
|
sylibr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 30 |
19 29
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 31 |
30
|
ralrimiva |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 32 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) |
| 33 |
32
|
fvresd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 34 |
|
simplr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑍 <s 𝑈 ) |
| 35 |
|
simpl23 |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝑍 ∈ No ) |
| 36 |
7
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 ∈ No ) |
| 37 |
|
sltval2 |
⊢ ( ( 𝑍 ∈ No ∧ 𝑈 ∈ No ) → ( 𝑍 <s 𝑈 ↔ ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) ) ) |
| 38 |
35 36 37
|
syl2an2r |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 <s 𝑈 ↔ ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) ) ) |
| 39 |
34 38
|
mpbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) ) |
| 40 |
|
necom |
⊢ ( ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) ↔ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) ) |
| 41 |
40
|
rabbii |
⊢ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } |
| 42 |
41
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } |
| 43 |
42
|
fveq2i |
⊢ ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) |
| 44 |
42
|
fveq2i |
⊢ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) |
| 45 |
39 43 44
|
3brtr4g |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 46 |
33 45
|
eqbrtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 47 |
|
raleq |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ∀ 𝑞 ∈ 𝑝 ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ↔ ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) |
| 48 |
|
fveq2 |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( 𝑈 ‘ 𝑝 ) = ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 50 |
48 49
|
breq12d |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ 𝑝 ) ↔ ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
| 51 |
47 50
|
anbi12d |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( ∀ 𝑞 ∈ 𝑝 ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ∧ ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ 𝑝 ) ) ↔ ( ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ∧ ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) ) |
| 52 |
51
|
rspcev |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ ( ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ∧ ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) → ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ∧ ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ 𝑝 ) ) ) |
| 53 |
11 31 46 52
|
syl12anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ∧ ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ 𝑝 ) ) ) |
| 54 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ dom 𝑈 ∈ On ) → ( 𝑍 ↾ dom 𝑈 ) ∈ No ) |
| 55 |
35 9 54
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ( 𝑍 ↾ dom 𝑈 ) ∈ No ) |
| 56 |
|
sltval |
⊢ ( ( ( 𝑍 ↾ dom 𝑈 ) ∈ No ∧ 𝑈 ∈ No ) → ( ( 𝑍 ↾ dom 𝑈 ) <s 𝑈 ↔ ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ∧ ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ 𝑝 ) ) ) ) |
| 57 |
55 36 56
|
syl2an2r |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) <s 𝑈 ↔ ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ∧ ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ 𝑝 ) ) ) ) |
| 58 |
53 57
|
mpbird |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ↾ dom 𝑈 ) <s 𝑈 ) |
| 59 |
|
sssucid |
⊢ dom 𝑈 ⊆ suc dom 𝑈 |
| 60 |
|
resabs1 |
⊢ ( dom 𝑈 ⊆ suc dom 𝑈 → ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) = ( 𝑍 ↾ dom 𝑈 ) ) |
| 61 |
59 60
|
mp1i |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) = ( 𝑍 ↾ dom 𝑈 ) ) |
| 62 |
|
resundir |
⊢ ( ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ↾ dom 𝑈 ) = ( ( 𝑈 ↾ dom 𝑈 ) ∪ ( { 〈 dom 𝑈 , 1o 〉 } ↾ dom 𝑈 ) ) |
| 63 |
|
nofun |
⊢ ( 𝑈 ∈ No → Fun 𝑈 ) |
| 64 |
7 63
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → Fun 𝑈 ) |
| 65 |
|
funrel |
⊢ ( Fun 𝑈 → Rel 𝑈 ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → Rel 𝑈 ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → Rel 𝑈 ) |
| 68 |
|
resdm |
⊢ ( Rel 𝑈 → ( 𝑈 ↾ dom 𝑈 ) = 𝑈 ) |
| 69 |
67 68
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ↾ dom 𝑈 ) = 𝑈 ) |
| 70 |
|
nodmord |
⊢ ( 𝑈 ∈ No → Ord dom 𝑈 ) |
| 71 |
7 70
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → Ord dom 𝑈 ) |
| 72 |
71
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → Ord dom 𝑈 ) |
| 73 |
|
ordirr |
⊢ ( Ord dom 𝑈 → ¬ dom 𝑈 ∈ dom 𝑈 ) |
| 74 |
72 73
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ¬ dom 𝑈 ∈ dom 𝑈 ) |
| 75 |
|
1oex |
⊢ 1o ∈ V |
| 76 |
75
|
snres0 |
⊢ ( ( { 〈 dom 𝑈 , 1o 〉 } ↾ dom 𝑈 ) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈 ) |
| 77 |
74 76
|
sylibr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { 〈 dom 𝑈 , 1o 〉 } ↾ dom 𝑈 ) = ∅ ) |
| 78 |
69 77
|
uneq12d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ↾ dom 𝑈 ) ∪ ( { 〈 dom 𝑈 , 1o 〉 } ↾ dom 𝑈 ) ) = ( 𝑈 ∪ ∅ ) ) |
| 79 |
|
un0 |
⊢ ( 𝑈 ∪ ∅ ) = 𝑈 |
| 80 |
78 79
|
eqtrdi |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ↾ dom 𝑈 ) ∪ ( { 〈 dom 𝑈 , 1o 〉 } ↾ dom 𝑈 ) ) = 𝑈 ) |
| 81 |
62 80
|
eqtrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ↾ dom 𝑈 ) = 𝑈 ) |
| 82 |
58 61 81
|
3brtr4d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) <s ( ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ↾ dom 𝑈 ) ) |
| 83 |
|
onsucb |
⊢ ( dom 𝑈 ∈ On ↔ suc dom 𝑈 ∈ On ) |
| 84 |
9 83
|
sylib |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → suc dom 𝑈 ∈ On ) |
| 85 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ suc dom 𝑈 ∈ On ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
| 86 |
35 84 85
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
| 87 |
86
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
| 88 |
75
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
| 89 |
88
|
noextend |
⊢ ( 𝑈 ∈ No → ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ∈ No ) |
| 90 |
7 89
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ∈ No ) |
| 91 |
90
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ∈ No ) |
| 92 |
|
sltres |
⊢ ( ( ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ∧ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ∈ No ∧ dom 𝑈 ∈ On ) → ( ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) <s ( ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ↾ dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) ) |
| 93 |
87 91 14 92
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) <s ( ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ↾ dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) ) |
| 94 |
82 93
|
mpd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) |
| 95 |
|
sltso |
⊢ <s Or No |
| 96 |
|
soasym |
⊢ ( ( <s Or No ∧ ( ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ∧ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ∈ No ) ) → ( ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) ) |
| 97 |
95 96
|
mpan |
⊢ ( ( ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ∧ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ∈ No ) → ( ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) ) |
| 98 |
86 91 97
|
syl2an2r |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) ) |
| 99 |
94 98
|
mpd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) |
| 100 |
|
sonr |
⊢ ( ( <s Or No ∧ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ∈ No ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) |
| 101 |
95 90 100
|
sylancr |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) |
| 102 |
101
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) |
| 103 |
|
df-suc |
⊢ suc dom 𝑈 = ( dom 𝑈 ∪ { dom 𝑈 } ) |
| 104 |
103
|
reseq2i |
⊢ ( 𝑍 ↾ suc dom 𝑈 ) = ( 𝑍 ↾ ( dom 𝑈 ∪ { dom 𝑈 } ) ) |
| 105 |
|
resundi |
⊢ ( 𝑍 ↾ ( dom 𝑈 ∪ { dom 𝑈 } ) ) = ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) |
| 106 |
104 105
|
eqtri |
⊢ ( 𝑍 ↾ suc dom 𝑈 ) = ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) |
| 107 |
|
dmres |
⊢ dom ( 𝑍 ↾ dom 𝑈 ) = ( dom 𝑈 ∩ dom 𝑍 ) |
| 108 |
42
|
eqeq1i |
⊢ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ↔ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } = dom 𝑈 ) |
| 109 |
108
|
biimpi |
⊢ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } = dom 𝑈 ) |
| 110 |
109
|
adantl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } = dom 𝑈 ) |
| 111 |
35
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 ∈ No ) |
| 112 |
7
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑈 ∈ No ) |
| 113 |
|
simp23 |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → 𝑍 ∈ No ) |
| 114 |
|
sonr |
⊢ ( ( <s Or No ∧ 𝑍 ∈ No ) → ¬ 𝑍 <s 𝑍 ) |
| 115 |
95 113 114
|
sylancr |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ¬ 𝑍 <s 𝑍 ) |
| 116 |
|
breq2 |
⊢ ( 𝑈 = 𝑍 → ( 𝑍 <s 𝑈 ↔ 𝑍 <s 𝑍 ) ) |
| 117 |
116
|
notbid |
⊢ ( 𝑈 = 𝑍 → ( ¬ 𝑍 <s 𝑈 ↔ ¬ 𝑍 <s 𝑍 ) ) |
| 118 |
115 117
|
syl5ibrcom |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ( 𝑈 = 𝑍 → ¬ 𝑍 <s 𝑈 ) ) |
| 119 |
118
|
necon2ad |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ( 𝑍 <s 𝑈 → 𝑈 ≠ 𝑍 ) ) |
| 120 |
119
|
imp |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝑈 ≠ 𝑍 ) |
| 121 |
120
|
necomd |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝑍 ≠ 𝑈 ) |
| 122 |
121
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 ≠ 𝑈 ) |
| 123 |
|
nosepssdm |
⊢ ( ( 𝑍 ∈ No ∧ 𝑈 ∈ No ∧ 𝑍 ≠ 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
| 124 |
111 112 122 123
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
| 125 |
110 124
|
eqsstrrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ⊆ dom 𝑍 ) |
| 126 |
|
dfss2 |
⊢ ( dom 𝑈 ⊆ dom 𝑍 ↔ ( dom 𝑈 ∩ dom 𝑍 ) = dom 𝑈 ) |
| 127 |
125 126
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( dom 𝑈 ∩ dom 𝑍 ) = dom 𝑈 ) |
| 128 |
107 127
|
eqtrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ) |
| 129 |
128
|
eleq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ↔ 𝑞 ∈ dom 𝑈 ) ) |
| 130 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) |
| 131 |
130
|
fvresd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 132 |
112 8
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ∈ On ) |
| 133 |
|
onelon |
⊢ ( ( dom 𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ On ) |
| 134 |
132 133
|
sylan |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ On ) |
| 135 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) |
| 136 |
135
|
eleq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ↔ 𝑞 ∈ dom 𝑈 ) ) |
| 137 |
136
|
biimpar |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) |
| 138 |
134 137 25
|
sylc |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 139 |
|
nesym |
⊢ ( ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 140 |
139
|
con2bii |
⊢ ( ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 141 |
138 140
|
sylibr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 142 |
131 141
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 143 |
142
|
ex |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom 𝑈 → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) |
| 144 |
129 143
|
sylbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) |
| 145 |
144
|
ralrimiv |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 146 |
|
nofun |
⊢ ( 𝑍 ∈ No → Fun 𝑍 ) |
| 147 |
111 146
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun 𝑍 ) |
| 148 |
147
|
funresd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun ( 𝑍 ↾ dom 𝑈 ) ) |
| 149 |
64
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun 𝑈 ) |
| 150 |
|
eqfunfv |
⊢ ( ( Fun ( 𝑍 ↾ dom 𝑈 ) ∧ Fun 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ↔ ( dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ∧ ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) ) |
| 151 |
148 149 150
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ↔ ( dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ∧ ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) ) |
| 152 |
128 145 151
|
mpbir2and |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ) |
| 153 |
35 146
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → Fun 𝑍 ) |
| 154 |
153
|
funfnd |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝑍 Fn dom 𝑍 ) |
| 155 |
|
ndmfv |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑈 ) = ∅ ) |
| 156 |
|
2on0 |
⊢ 2o ≠ ∅ |
| 157 |
156
|
necomi |
⊢ ∅ ≠ 2o |
| 158 |
|
neeq1 |
⊢ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ → ( ( 𝑈 ‘ dom 𝑈 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
| 159 |
157 158
|
mpbiri |
⊢ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ → ( 𝑈 ‘ dom 𝑈 ) ≠ 2o ) |
| 160 |
159
|
neneqd |
⊢ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ → ¬ ( 𝑈 ‘ dom 𝑈 ) = 2o ) |
| 161 |
155 160
|
syl |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑈 → ¬ ( 𝑈 ‘ dom 𝑈 ) = 2o ) |
| 162 |
112 70 73 161
|
4syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑈 ‘ dom 𝑈 ) = 2o ) |
| 163 |
162
|
intnand |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) |
| 164 |
|
simpr |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → 𝑍 <s 𝑈 ) |
| 165 |
35 7 37
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ( 𝑍 <s 𝑈 ↔ ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) ) ) |
| 166 |
164 165
|
mpbid |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) ) |
| 167 |
166
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) ) |
| 168 |
110
|
fveq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) = ( 𝑍 ‘ dom 𝑈 ) ) |
| 169 |
110
|
fveq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ) = ( 𝑈 ‘ dom 𝑈 ) ) |
| 170 |
167 168 169
|
3brtr3d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ dom 𝑈 ) ) |
| 171 |
|
fvex |
⊢ ( 𝑍 ‘ dom 𝑈 ) ∈ V |
| 172 |
|
fvex |
⊢ ( 𝑈 ‘ dom 𝑈 ) ∈ V |
| 173 |
171 172
|
brtp |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑈 ‘ dom 𝑈 ) ↔ ( ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) ) |
| 174 |
170 173
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) ) |
| 175 |
|
3orel3 |
⊢ ( ¬ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) → ( ( ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) → ( ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) ) ) |
| 176 |
163 174 175
|
sylc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) ) |
| 177 |
|
andi |
⊢ ( ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) ↔ ( ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) ) |
| 178 |
176 177
|
sylibr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑍 ‘ dom 𝑈 ) = 1o ∧ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑈 ) = 2o ) ) ) |
| 179 |
178
|
simpld |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ dom 𝑈 ) = 1o ) |
| 180 |
|
ndmfv |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑍 → ( 𝑍 ‘ dom 𝑈 ) = ∅ ) |
| 181 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 182 |
181
|
necomi |
⊢ ∅ ≠ 1o |
| 183 |
|
neeq1 |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ( ( 𝑍 ‘ dom 𝑈 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
| 184 |
182 183
|
mpbiri |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ( 𝑍 ‘ dom 𝑈 ) ≠ 1o ) |
| 185 |
184
|
neneqd |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ¬ ( 𝑍 ‘ dom 𝑈 ) = 1o ) |
| 186 |
180 185
|
syl |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑍 → ¬ ( 𝑍 ‘ dom 𝑈 ) = 1o ) |
| 187 |
186
|
con4i |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = 1o → dom 𝑈 ∈ dom 𝑍 ) |
| 188 |
179 187
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ∈ dom 𝑍 ) |
| 189 |
|
fnressn |
⊢ ( ( 𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } ) |
| 190 |
154 188 189
|
syl2an2r |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } ) |
| 191 |
179
|
opeq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 = 〈 dom 𝑈 , 1o 〉 ) |
| 192 |
191
|
sneqd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } = { 〈 dom 𝑈 , 1o 〉 } ) |
| 193 |
190 192
|
eqtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , 1o 〉 } ) |
| 194 |
152 193
|
uneq12d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) = ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) |
| 195 |
106 194
|
eqtrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) = ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) |
| 196 |
195
|
breq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ↔ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) ) ) |
| 197 |
102 196
|
mtbird |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) |
| 198 |
|
nosepssdm |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ∧ 𝑈 ≠ 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ) |
| 199 |
7 35 120 198
|
syl3anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ) |
| 200 |
|
nosepon |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ∧ 𝑈 ≠ 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
| 201 |
7 35 120 200
|
syl3anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
| 202 |
|
onsseleq |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ dom 𝑈 ∈ On ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ↔ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) ) |
| 203 |
201 9 202
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ↔ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) ) |
| 204 |
199 203
|
mpbid |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) |
| 205 |
99 197 204
|
mpjaodan |
⊢ ( ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ∧ 𝑍 <s 𝑈 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) |
| 206 |
4 205
|
mpdan |
⊢ ( ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) |