| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omex | ⊢ ω  ∈  V | 
						
							| 2 | 1 | mptex | ⊢ ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ∈  V | 
						
							| 3 | 2 | rnex | ⊢ ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ∈  V | 
						
							| 4 |  | zfregfr | ⊢  E   Fr  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 5 |  | ssid | ⊢ ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ⊆  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 6 |  | dmmptg | ⊢ ( ∀ 𝑤  ∈  ω ( 𝐹 ‘ 𝑤 )  ∈  V  →  dom  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  =  ω ) | 
						
							| 7 |  | fvexd | ⊢ ( 𝑤  ∈  ω  →  ( 𝐹 ‘ 𝑤 )  ∈  V ) | 
						
							| 8 | 6 7 | mprg | ⊢ dom  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  =  ω | 
						
							| 9 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 10 | 9 | ne0ii | ⊢ ω  ≠  ∅ | 
						
							| 11 | 8 10 | eqnetri | ⊢ dom  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ≠  ∅ | 
						
							| 12 |  | dm0rn0 | ⊢ ( dom  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  =  ∅  ↔  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  =  ∅ ) | 
						
							| 13 | 12 | necon3bii | ⊢ ( dom  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ≠  ∅  ↔  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ≠  ∅ ) | 
						
							| 14 | 11 13 | mpbi | ⊢ ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ≠  ∅ | 
						
							| 15 |  | fri | ⊢ ( ( ( ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ∈  V  ∧   E   Fr  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) )  ∧  ( ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ⊆  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ∧  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ≠  ∅ ) )  →  ∃ 𝑦  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦 ) | 
						
							| 16 | 3 4 5 14 15 | mp4an | ⊢ ∃ 𝑦  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦 | 
						
							| 17 |  | fvex | ⊢ ( 𝐹 ‘ 𝑤 )  ∈  V | 
						
							| 18 |  | eqid | ⊢ ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  =  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 19 | 17 18 | fnmpti | ⊢ ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  Fn  ω | 
						
							| 20 |  | fvelrnb | ⊢ ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  Fn  ω  →  ( 𝑦  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ↔  ∃ 𝑥  ∈  ω ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( 𝑦  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  ↔  ∃ 𝑥  ∈  ω ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦 ) | 
						
							| 22 |  | peano2 | ⊢ ( 𝑥  ∈  ω  →  suc  𝑥  ∈  ω ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑤  =  suc  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ suc  𝑥 ) ) | 
						
							| 24 |  | fvex | ⊢ ( 𝐹 ‘ suc  𝑥 )  ∈  V | 
						
							| 25 | 23 18 24 | fvmpt | ⊢ ( suc  𝑥  ∈  ω  →  ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ suc  𝑥 )  =  ( 𝐹 ‘ suc  𝑥 ) ) | 
						
							| 26 | 22 25 | syl | ⊢ ( 𝑥  ∈  ω  →  ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ suc  𝑥 )  =  ( 𝐹 ‘ suc  𝑥 ) ) | 
						
							| 27 |  | fnfvelrn | ⊢ ( ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  Fn  ω  ∧  suc  𝑥  ∈  ω )  →  ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ suc  𝑥 )  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 28 | 19 22 27 | sylancr | ⊢ ( 𝑥  ∈  ω  →  ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ suc  𝑥 )  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 29 | 26 28 | eqeltrrd | ⊢ ( 𝑥  ∈  ω  →  ( 𝐹 ‘ suc  𝑥 )  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 30 |  | epel | ⊢ ( 𝑧  E  𝑦  ↔  𝑧  ∈  𝑦 ) | 
						
							| 31 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ suc  𝑥 )  →  ( 𝑧  ∈  𝑦  ↔  ( 𝐹 ‘ suc  𝑥 )  ∈  𝑦 ) ) | 
						
							| 32 | 30 31 | bitrid | ⊢ ( 𝑧  =  ( 𝐹 ‘ suc  𝑥 )  →  ( 𝑧  E  𝑦  ↔  ( 𝐹 ‘ suc  𝑥 )  ∈  𝑦 ) ) | 
						
							| 33 | 32 | notbid | ⊢ ( 𝑧  =  ( 𝐹 ‘ suc  𝑥 )  →  ( ¬  𝑧  E  𝑦  ↔  ¬  ( 𝐹 ‘ suc  𝑥 )  ∈  𝑦 ) ) | 
						
							| 34 |  | df-nel | ⊢ ( ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦  ↔  ¬  ( 𝐹 ‘ suc  𝑥 )  ∈  𝑦 ) | 
						
							| 35 | 33 34 | bitr4di | ⊢ ( 𝑧  =  ( 𝐹 ‘ suc  𝑥 )  →  ( ¬  𝑧  E  𝑦  ↔  ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦 ) ) | 
						
							| 36 | 35 | rspccv | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦  →  ( ( 𝐹 ‘ suc  𝑥 )  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  →  ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦 ) ) | 
						
							| 37 | 29 36 | syl5com | ⊢ ( 𝑥  ∈  ω  →  ( ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦  →  ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦 ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 39 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 40 | 38 18 39 | fvmpt | ⊢ ( 𝑥  ∈  ω  →  ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 41 |  | eqeq1 | ⊢ ( ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦  →  ( ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 )  ↔  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 42 | 40 41 | syl5ibcom | ⊢ ( 𝑥  ∈  ω  →  ( ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 43 |  | neleq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦  ↔  ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 | biimpd | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦  →  ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 45 | 42 44 | syl6 | ⊢ ( 𝑥  ∈  ω  →  ( ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦  →  ( ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦  →  ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 46 | 45 | com23 | ⊢ ( 𝑥  ∈  ω  →  ( ( 𝐹 ‘ suc  𝑥 )  ∉  𝑦  →  ( ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦  →  ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 47 | 37 46 | syldc | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦  →  ( 𝑥  ∈  ω  →  ( ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦  →  ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 48 | 47 | reximdvai | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦  →  ( ∃ 𝑥  ∈  ω ( ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 )  =  𝑦  →  ∃ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 49 | 21 48 | biimtrid | ⊢ ( ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦  →  ( 𝑦  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  →  ∃ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 50 | 49 | com12 | ⊢ ( 𝑦  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) )  →  ( ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦  →  ∃ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 51 | 50 | rexlimiv | ⊢ ( ∃ 𝑦  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ∀ 𝑧  ∈  ran  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) ¬  𝑧  E  𝑦  →  ∃ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 52 | 16 51 | ax-mp | ⊢ ∃ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∉  ( 𝐹 ‘ 𝑥 ) |