Step |
Hyp |
Ref |
Expression |
1 |
|
omex |
⊢ ω ∈ V |
2 |
1
|
mptex |
⊢ ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ∈ V |
3 |
2
|
rnex |
⊢ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ∈ V |
4 |
|
zfregfr |
⊢ E Fr ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) |
5 |
|
ssid |
⊢ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ⊆ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) |
6 |
|
dmmptg |
⊢ ( ∀ 𝑤 ∈ ω ( 𝐹 ‘ 𝑤 ) ∈ V → dom ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) = ω ) |
7 |
|
fvexd |
⊢ ( 𝑤 ∈ ω → ( 𝐹 ‘ 𝑤 ) ∈ V ) |
8 |
6 7
|
mprg |
⊢ dom ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) = ω |
9 |
|
peano1 |
⊢ ∅ ∈ ω |
10 |
9
|
ne0ii |
⊢ ω ≠ ∅ |
11 |
8 10
|
eqnetri |
⊢ dom ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ≠ ∅ |
12 |
|
dm0rn0 |
⊢ ( dom ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) = ∅ ↔ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
13 |
12
|
necon3bii |
⊢ ( dom ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ≠ ∅ ↔ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ≠ ∅ ) |
14 |
11 13
|
mpbi |
⊢ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ≠ ∅ |
15 |
|
fri |
⊢ ( ( ( ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ∈ V ∧ E Fr ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ) ∧ ( ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ⊆ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ∧ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 ) |
16 |
3 4 5 14 15
|
mp4an |
⊢ ∃ 𝑦 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 |
17 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑤 ) ∈ V |
18 |
|
eqid |
⊢ ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) = ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) |
19 |
17 18
|
fnmpti |
⊢ ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) Fn ω |
20 |
|
fvelrnb |
⊢ ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) Fn ω → ( 𝑦 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ↔ ∃ 𝑥 ∈ ω ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 ) ) |
21 |
19 20
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ↔ ∃ 𝑥 ∈ ω ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 ) |
22 |
|
peano2 |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) |
23 |
|
fveq2 |
⊢ ( 𝑤 = suc 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ suc 𝑥 ) ) |
24 |
|
fvex |
⊢ ( 𝐹 ‘ suc 𝑥 ) ∈ V |
25 |
23 18 24
|
fvmpt |
⊢ ( suc 𝑥 ∈ ω → ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑥 ) ) |
26 |
22 25
|
syl |
⊢ ( 𝑥 ∈ ω → ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑥 ) ) |
27 |
|
fnfvelrn |
⊢ ( ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) Fn ω ∧ suc 𝑥 ∈ ω ) → ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ suc 𝑥 ) ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
28 |
19 22 27
|
sylancr |
⊢ ( 𝑥 ∈ ω → ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ suc 𝑥 ) ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
29 |
26 28
|
eqeltrrd |
⊢ ( 𝑥 ∈ ω → ( 𝐹 ‘ suc 𝑥 ) ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
30 |
|
epel |
⊢ ( 𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦 ) |
31 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ suc 𝑥 ) → ( 𝑧 ∈ 𝑦 ↔ ( 𝐹 ‘ suc 𝑥 ) ∈ 𝑦 ) ) |
32 |
30 31
|
syl5bb |
⊢ ( 𝑧 = ( 𝐹 ‘ suc 𝑥 ) → ( 𝑧 E 𝑦 ↔ ( 𝐹 ‘ suc 𝑥 ) ∈ 𝑦 ) ) |
33 |
32
|
notbid |
⊢ ( 𝑧 = ( 𝐹 ‘ suc 𝑥 ) → ( ¬ 𝑧 E 𝑦 ↔ ¬ ( 𝐹 ‘ suc 𝑥 ) ∈ 𝑦 ) ) |
34 |
|
df-nel |
⊢ ( ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 ↔ ¬ ( 𝐹 ‘ suc 𝑥 ) ∈ 𝑦 ) |
35 |
33 34
|
bitr4di |
⊢ ( 𝑧 = ( 𝐹 ‘ suc 𝑥 ) → ( ¬ 𝑧 E 𝑦 ↔ ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 ) ) |
36 |
35
|
rspccv |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 → ( ( 𝐹 ‘ suc 𝑥 ) ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) → ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 ) ) |
37 |
29 36
|
syl5com |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 → ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 ) ) |
38 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
39 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
40 |
38 18 39
|
fvmpt |
⊢ ( 𝑥 ∈ ω → ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
41 |
|
eqeq1 |
⊢ ( ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 → ( ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
42 |
40 41
|
syl5ibcom |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
43 |
|
neleq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 ↔ ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) |
44 |
43
|
biimpd |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 → ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) |
45 |
42 44
|
syl6 |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 → ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) ) |
46 |
45
|
com23 |
⊢ ( 𝑥 ∈ ω → ( ( 𝐹 ‘ suc 𝑥 ) ∉ 𝑦 → ( ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 → ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) ) |
47 |
37 46
|
syldc |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 → ( 𝑥 ∈ ω → ( ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 → ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) ) |
48 |
47
|
reximdvai |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 → ( ∃ 𝑥 ∈ ω ( ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) |
49 |
21 48
|
syl5bi |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 → ( 𝑦 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) → ∃ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) |
50 |
49
|
com12 |
⊢ ( 𝑦 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 → ∃ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) ) |
51 |
50
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ∀ 𝑧 ∈ ran ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) ¬ 𝑧 E 𝑦 → ∃ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) ) |
52 |
16 51
|
ax-mp |
⊢ ∃ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∉ ( 𝐹 ‘ 𝑥 ) |