| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltso |
⊢ <s Or No |
| 2 |
|
soss |
⊢ ( 𝑆 ⊆ No → ( <s Or No → <s Or 𝑆 ) ) |
| 3 |
1 2
|
mpi |
⊢ ( 𝑆 ⊆ No → <s Or 𝑆 ) |
| 4 |
|
cnvso |
⊢ ( <s Or 𝑆 ↔ ◡ <s Or 𝑆 ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝑆 ⊆ No → ◡ <s Or 𝑆 ) |
| 6 |
|
somo |
⊢ ( ◡ <s Or 𝑆 → ∃* 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ¬ 𝑦 ◡ <s 𝑥 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑆 ⊆ No → ∃* 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ¬ 𝑦 ◡ <s 𝑥 ) |
| 8 |
|
vex |
⊢ 𝑦 ∈ V |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
8 9
|
brcnv |
⊢ ( 𝑦 ◡ <s 𝑥 ↔ 𝑥 <s 𝑦 ) |
| 11 |
10
|
notbii |
⊢ ( ¬ 𝑦 ◡ <s 𝑥 ↔ ¬ 𝑥 <s 𝑦 ) |
| 12 |
11
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑦 ◡ <s 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦 ) |
| 13 |
12
|
rmobii |
⊢ ( ∃* 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ¬ 𝑦 ◡ <s 𝑥 ↔ ∃* 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦 ) |
| 14 |
7 13
|
sylib |
⊢ ( 𝑆 ⊆ No → ∃* 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦 ) |