Metamath Proof Explorer


Theorem nonbooli

Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ( ( H i^i F ) vH ( H i^i G ) ) = 0H but ( H i^i ( F vH G ) ) =/= 0H . The antecedent specifies that the vectors A and B are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to F , G , and H . (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)

Ref Expression
Hypotheses nonbool.1 𝐴 ∈ ℋ
nonbool.2 𝐵 ∈ ℋ
nonbool.3 𝐹 = ( span ‘ { 𝐴 } )
nonbool.4 𝐺 = ( span ‘ { 𝐵 } )
nonbool.5 𝐻 = ( span ‘ { ( 𝐴 + 𝐵 ) } )
Assertion nonbooli ( ¬ ( 𝐴𝐺𝐵𝐹 ) → ( 𝐻 ∩ ( 𝐹 𝐺 ) ) ≠ ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 nonbool.1 𝐴 ∈ ℋ
2 nonbool.2 𝐵 ∈ ℋ
3 nonbool.3 𝐹 = ( span ‘ { 𝐴 } )
4 nonbool.4 𝐺 = ( span ‘ { 𝐵 } )
5 nonbool.5 𝐻 = ( span ‘ { ( 𝐴 + 𝐵 ) } )
6 1 2 hvaddcli ( 𝐴 + 𝐵 ) ∈ ℋ
7 spansnid ( ( 𝐴 + 𝐵 ) ∈ ℋ → ( 𝐴 + 𝐵 ) ∈ ( span ‘ { ( 𝐴 + 𝐵 ) } ) )
8 6 7 ax-mp ( 𝐴 + 𝐵 ) ∈ ( span ‘ { ( 𝐴 + 𝐵 ) } )
9 8 5 eleqtrri ( 𝐴 + 𝐵 ) ∈ 𝐻
10 1 spansnchi ( span ‘ { 𝐴 } ) ∈ C
11 10 chshii ( span ‘ { 𝐴 } ) ∈ S
12 3 11 eqeltri 𝐹S
13 2 spansnchi ( span ‘ { 𝐵 } ) ∈ C
14 13 chshii ( span ‘ { 𝐵 } ) ∈ S
15 4 14 eqeltri 𝐺S
16 12 15 shsleji ( 𝐹 + 𝐺 ) ⊆ ( 𝐹 𝐺 )
17 spansnid ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) )
18 1 17 ax-mp 𝐴 ∈ ( span ‘ { 𝐴 } )
19 18 3 eleqtrri 𝐴𝐹
20 spansnid ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) )
21 2 20 ax-mp 𝐵 ∈ ( span ‘ { 𝐵 } )
22 21 4 eleqtrri 𝐵𝐺
23 12 15 shsvai ( ( 𝐴𝐹𝐵𝐺 ) → ( 𝐴 + 𝐵 ) ∈ ( 𝐹 + 𝐺 ) )
24 19 22 23 mp2an ( 𝐴 + 𝐵 ) ∈ ( 𝐹 + 𝐺 )
25 16 24 sselii ( 𝐴 + 𝐵 ) ∈ ( 𝐹 𝐺 )
26 elin ( ( 𝐴 + 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝐻 ∧ ( 𝐴 + 𝐵 ) ∈ ( 𝐹 𝐺 ) ) )
27 9 25 26 mpbir2an ( 𝐴 + 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 𝐺 ) )
28 eleq2 ( ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 → ( ( 𝐴 + 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) ↔ ( 𝐴 + 𝐵 ) ∈ 0 ) )
29 27 28 mpbii ( ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 → ( 𝐴 + 𝐵 ) ∈ 0 )
30 elch0 ( ( 𝐴 + 𝐵 ) ∈ 0 ↔ ( 𝐴 + 𝐵 ) = 0 )
31 29 30 sylib ( ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 → ( 𝐴 + 𝐵 ) = 0 )
32 ch0 ( ( span ‘ { 𝐴 } ) ∈ C → 0 ∈ ( span ‘ { 𝐴 } ) )
33 10 32 ax-mp 0 ∈ ( span ‘ { 𝐴 } )
34 31 33 eqeltrdi ( ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 → ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) )
35 3 eleq2i ( 𝐵𝐹𝐵 ∈ ( span ‘ { 𝐴 } ) )
36 sumspansn ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) )
37 1 2 36 mp2an ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) )
38 35 37 bitr4i ( 𝐵𝐹 ↔ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) )
39 34 38 sylibr ( ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0𝐵𝐹 )
40 39 con3i ( ¬ 𝐵𝐹 → ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 )
41 40 adantl ( ( ¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹 ) → ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 )
42 5 3 ineq12i ( 𝐻𝐹 ) = ( ( span ‘ { ( 𝐴 + 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) )
43 6 1 spansnm0i ( ¬ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → ( ( span ‘ { ( 𝐴 + 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) = 0 )
44 38 43 sylnbi ( ¬ 𝐵𝐹 → ( ( span ‘ { ( 𝐴 + 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) = 0 )
45 42 44 syl5eq ( ¬ 𝐵𝐹 → ( 𝐻𝐹 ) = 0 )
46 5 4 ineq12i ( 𝐻𝐺 ) = ( ( span ‘ { ( 𝐴 + 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) )
47 sumspansn ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 + 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) )
48 2 1 47 mp2an ( ( 𝐵 + 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) )
49 1 2 hvcomi ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )
50 49 eleq1i ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ↔ ( 𝐵 + 𝐴 ) ∈ ( span ‘ { 𝐵 } ) )
51 4 eleq2i ( 𝐴𝐺𝐴 ∈ ( span ‘ { 𝐵 } ) )
52 48 50 51 3bitr4ri ( 𝐴𝐺 ↔ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐵 } ) )
53 6 2 spansnm0i ( ¬ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { ( 𝐴 + 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) = 0 )
54 52 53 sylnbi ( ¬ 𝐴𝐺 → ( ( span ‘ { ( 𝐴 + 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) = 0 )
55 46 54 syl5eq ( ¬ 𝐴𝐺 → ( 𝐻𝐺 ) = 0 )
56 45 55 oveqan12rd ( ( ¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹 ) → ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) = ( 0 0 ) )
57 h0elch 0C
58 57 chj0i ( 0 0 ) = 0
59 56 58 eqtrdi ( ( ¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹 ) → ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) = 0 )
60 eqeq2 ( ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) = 0 → ( ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) ↔ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 ) )
61 60 notbid ( ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) = 0 → ( ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) ↔ ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 ) )
62 61 biimparc ( ( ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = 0 ∧ ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) = 0 ) → ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) )
63 41 59 62 syl2anc ( ( ¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹 ) → ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) )
64 ioran ( ¬ ( 𝐴𝐺𝐵𝐹 ) ↔ ( ¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹 ) )
65 df-ne ( ( 𝐻 ∩ ( 𝐹 𝐺 ) ) ≠ ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) ↔ ¬ ( 𝐻 ∩ ( 𝐹 𝐺 ) ) = ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) )
66 63 64 65 3imtr4i ( ¬ ( 𝐴𝐺𝐵𝐹 ) → ( 𝐻 ∩ ( 𝐹 𝐺 ) ) ≠ ( ( 𝐻𝐹 ) ∨ ( 𝐻𝐺 ) ) )