Step |
Hyp |
Ref |
Expression |
1 |
|
nonbool.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
nonbool.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
nonbool.3 |
⊢ 𝐹 = ( span ‘ { 𝐴 } ) |
4 |
|
nonbool.4 |
⊢ 𝐺 = ( span ‘ { 𝐵 } ) |
5 |
|
nonbool.5 |
⊢ 𝐻 = ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) |
6 |
1 2
|
hvaddcli |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
7 |
|
spansnid |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) |
8 |
6 7
|
ax-mp |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) |
9 |
8 5
|
eleqtrri |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ 𝐻 |
10 |
1
|
spansnchi |
⊢ ( span ‘ { 𝐴 } ) ∈ Cℋ |
11 |
10
|
chshii |
⊢ ( span ‘ { 𝐴 } ) ∈ Sℋ |
12 |
3 11
|
eqeltri |
⊢ 𝐹 ∈ Sℋ |
13 |
2
|
spansnchi |
⊢ ( span ‘ { 𝐵 } ) ∈ Cℋ |
14 |
13
|
chshii |
⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
15 |
4 14
|
eqeltri |
⊢ 𝐺 ∈ Sℋ |
16 |
12 15
|
shsleji |
⊢ ( 𝐹 +ℋ 𝐺 ) ⊆ ( 𝐹 ∨ℋ 𝐺 ) |
17 |
|
spansnid |
⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) |
18 |
1 17
|
ax-mp |
⊢ 𝐴 ∈ ( span ‘ { 𝐴 } ) |
19 |
18 3
|
eleqtrri |
⊢ 𝐴 ∈ 𝐹 |
20 |
|
spansnid |
⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) |
21 |
2 20
|
ax-mp |
⊢ 𝐵 ∈ ( span ‘ { 𝐵 } ) |
22 |
21 4
|
eleqtrri |
⊢ 𝐵 ∈ 𝐺 |
23 |
12 15
|
shsvai |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 +ℋ 𝐺 ) ) |
24 |
19 22 23
|
mp2an |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 +ℋ 𝐺 ) |
25 |
16 24
|
sselii |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 ∨ℋ 𝐺 ) |
26 |
|
elin |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ↔ ( ( 𝐴 +ℎ 𝐵 ) ∈ 𝐻 ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 ∨ℋ 𝐺 ) ) ) |
27 |
9 25 26
|
mpbir2an |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) |
28 |
|
eleq2 |
⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ↔ ( 𝐴 +ℎ 𝐵 ) ∈ 0ℋ ) ) |
29 |
27 28
|
mpbii |
⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( 𝐴 +ℎ 𝐵 ) ∈ 0ℋ ) |
30 |
|
elch0 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ 0ℋ ↔ ( 𝐴 +ℎ 𝐵 ) = 0ℎ ) |
31 |
29 30
|
sylib |
⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( 𝐴 +ℎ 𝐵 ) = 0ℎ ) |
32 |
|
ch0 |
⊢ ( ( span ‘ { 𝐴 } ) ∈ Cℋ → 0ℎ ∈ ( span ‘ { 𝐴 } ) ) |
33 |
10 32
|
ax-mp |
⊢ 0ℎ ∈ ( span ‘ { 𝐴 } ) |
34 |
31 33
|
eqeltrdi |
⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) |
35 |
3
|
eleq2i |
⊢ ( 𝐵 ∈ 𝐹 ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) |
36 |
|
sumspansn |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) ) |
37 |
1 2 36
|
mp2an |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) |
38 |
35 37
|
bitr4i |
⊢ ( 𝐵 ∈ 𝐹 ↔ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) |
39 |
34 38
|
sylibr |
⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → 𝐵 ∈ 𝐹 ) |
40 |
39
|
con3i |
⊢ ( ¬ 𝐵 ∈ 𝐹 → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) |
41 |
40
|
adantl |
⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) |
42 |
5 3
|
ineq12i |
⊢ ( 𝐻 ∩ 𝐹 ) = ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) |
43 |
6 1
|
spansnm0i |
⊢ ( ¬ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) = 0ℋ ) |
44 |
38 43
|
sylnbi |
⊢ ( ¬ 𝐵 ∈ 𝐹 → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) = 0ℋ ) |
45 |
42 44
|
eqtrid |
⊢ ( ¬ 𝐵 ∈ 𝐹 → ( 𝐻 ∩ 𝐹 ) = 0ℋ ) |
46 |
5 4
|
ineq12i |
⊢ ( 𝐻 ∩ 𝐺 ) = ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) |
47 |
|
sumspansn |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ) |
48 |
2 1 47
|
mp2an |
⊢ ( ( 𝐵 +ℎ 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) |
49 |
1 2
|
hvcomi |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
50 |
49
|
eleq1i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ↔ ( 𝐵 +ℎ 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ) |
51 |
4
|
eleq2i |
⊢ ( 𝐴 ∈ 𝐺 ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) |
52 |
48 50 51
|
3bitr4ri |
⊢ ( 𝐴 ∈ 𝐺 ↔ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
53 |
6 2
|
spansnm0i |
⊢ ( ¬ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |
54 |
52 53
|
sylnbi |
⊢ ( ¬ 𝐴 ∈ 𝐺 → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |
55 |
46 54
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ 𝐺 → ( 𝐻 ∩ 𝐺 ) = 0ℋ ) |
56 |
45 55
|
oveqan12rd |
⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = ( 0ℋ ∨ℋ 0ℋ ) ) |
57 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
58 |
57
|
chj0i |
⊢ ( 0ℋ ∨ℋ 0ℋ ) = 0ℋ |
59 |
56 58
|
eqtrdi |
⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ ) |
60 |
|
eqeq2 |
⊢ ( ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ → ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ↔ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) ) |
61 |
60
|
notbid |
⊢ ( ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ → ( ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ↔ ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) ) |
62 |
61
|
biimparc |
⊢ ( ( ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ∧ ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ ) → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |
63 |
41 59 62
|
syl2anc |
⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |
64 |
|
ioran |
⊢ ( ¬ ( 𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹 ) ↔ ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) ) |
65 |
|
df-ne |
⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ≠ ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ↔ ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |
66 |
63 64 65
|
3imtr4i |
⊢ ( ¬ ( 𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹 ) → ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ≠ ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |