Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
2 |
1
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐵 ∈ ℤ ) |
3 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 ↑ 2 ) < 𝐴 ) |
4 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 ∈ ℂ ) |
7 |
6
|
sqsqrtd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
8 |
3 7
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 ↑ 2 ) < ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
9 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐵 ∈ ℝ ) |
11 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ 𝐴 ) |
13 |
5 12
|
resqrtcld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
14 |
|
nn0ge0 |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ 𝐵 ) |
16 |
5 12
|
sqrtge0d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
17 |
10 13 15 16
|
lt2sqd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 < ( √ ‘ 𝐴 ) ↔ ( 𝐵 ↑ 2 ) < ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
18 |
8 17
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐵 < ( √ ‘ 𝐴 ) ) |
19 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) |
20 |
7 19
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( 𝐵 + 1 ) ↑ 2 ) ) |
21 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
22 |
10 21
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 + 1 ) ∈ ℝ ) |
23 |
|
peano2nn0 |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 + 1 ) ∈ ℕ0 ) |
24 |
|
nn0ge0 |
⊢ ( ( 𝐵 + 1 ) ∈ ℕ0 → 0 ≤ ( 𝐵 + 1 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ ( 𝐵 + 1 ) ) |
26 |
25
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ ( 𝐵 + 1 ) ) |
27 |
13 22 16 26
|
lt2sqd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) < ( 𝐵 + 1 ) ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) |
28 |
20 27
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( √ ‘ 𝐴 ) < ( 𝐵 + 1 ) ) |
29 |
|
btwnnz |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 < ( √ ‘ 𝐴 ) ∧ ( √ ‘ 𝐴 ) < ( 𝐵 + 1 ) ) → ¬ ( √ ‘ 𝐴 ) ∈ ℤ ) |
30 |
2 18 28 29
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ¬ ( √ ‘ 𝐴 ) ∈ ℤ ) |
31 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 ∈ ℤ ) |
33 |
|
zsqrtelqelz |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( √ ‘ 𝐴 ) ∈ ℤ ) |
34 |
33
|
ex |
⊢ ( 𝐴 ∈ ℤ → ( ( √ ‘ 𝐴 ) ∈ ℚ → ( √ ‘ 𝐴 ) ∈ ℤ ) ) |
35 |
32 34
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) ∈ ℚ → ( √ ‘ 𝐴 ) ∈ ℤ ) ) |
36 |
30 35
|
mtod |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ¬ ( √ ‘ 𝐴 ) ∈ ℚ ) |