Description: If neither of two propositions is true, then these propositions are equivalent. (Contributed by BJ, 26-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norbi | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) | |
| 2 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
| 3 | 1 2 | pm5.21ni | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) |