Description: If neither of two propositions is true, then these propositions are equivalent. (Contributed by BJ, 26-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | norbi | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) | |
2 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
3 | 1 2 | pm5.21ni | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) |