Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | nordeq | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ≠ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
2 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
3 | 2 | notbid | ⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
4 | 1 3 | syl5ibcom | ⊢ ( Ord 𝐴 → ( 𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ) |
5 | 4 | necon2ad | ⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐴 ≠ 𝐵 ) ) |
6 | 5 | imp | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ≠ 𝐵 ) |