Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → 𝑤 ∈ No ) |
2 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → 𝐵 ∈ No ) |
3 |
1 2
|
mulscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → ( 𝑤 ·s 𝐵 ) ∈ No ) |
4 |
|
oveq1 |
⊢ ( ( 𝐴 ·s 𝑤 ) = 1s → ( ( 𝐴 ·s 𝑤 ) ·s 𝐵 ) = ( 1s ·s 𝐵 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) → ( ( 𝐴 ·s 𝑤 ) ·s 𝐵 ) = ( 1s ·s 𝐵 ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → ( ( 𝐴 ·s 𝑤 ) ·s 𝐵 ) = ( 1s ·s 𝐵 ) ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → 𝐴 ∈ No ) |
8 |
7 1 2
|
mulsassd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → ( ( 𝐴 ·s 𝑤 ) ·s 𝐵 ) = ( 𝐴 ·s ( 𝑤 ·s 𝐵 ) ) ) |
9 |
2
|
mulslidd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → ( 1s ·s 𝐵 ) = 𝐵 ) |
10 |
6 8 9
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → ( 𝐴 ·s ( 𝑤 ·s 𝐵 ) ) = 𝐵 ) |
11 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑤 ·s 𝐵 ) → ( 𝐴 ·s 𝑧 ) = ( 𝐴 ·s ( 𝑤 ·s 𝐵 ) ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑤 ·s 𝐵 ) → ( ( 𝐴 ·s 𝑧 ) = 𝐵 ↔ ( 𝐴 ·s ( 𝑤 ·s 𝐵 ) ) = 𝐵 ) ) |
13 |
12
|
rspcev |
⊢ ( ( ( 𝑤 ·s 𝐵 ) ∈ No ∧ ( 𝐴 ·s ( 𝑤 ·s 𝐵 ) ) = 𝐵 ) → ∃ 𝑧 ∈ No ( 𝐴 ·s 𝑧 ) = 𝐵 ) |
14 |
3 10 13
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( 𝐴 ·s 𝑤 ) = 1s ) ) → ∃ 𝑧 ∈ No ( 𝐴 ·s 𝑧 ) = 𝐵 ) |
15 |
14
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) → ( ∃ 𝑤 ∈ No ( 𝐴 ·s 𝑤 ) = 1s → ∃ 𝑧 ∈ No ( 𝐴 ·s 𝑧 ) = 𝐵 ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃ 𝑤 ∈ No ( 𝐴 ·s 𝑤 ) = 1s ) → ∃ 𝑧 ∈ No ( 𝐴 ·s 𝑧 ) = 𝐵 ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s 𝑤 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐴 ·s 𝑥 ) = 1s ↔ ( 𝐴 ·s 𝑤 ) = 1s ) ) |
19 |
18
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ↔ ∃ 𝑤 ∈ No ( 𝐴 ·s 𝑤 ) = 1s ) |
20 |
19
|
anbi2i |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) ↔ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃ 𝑤 ∈ No ( 𝐴 ·s 𝑤 ) = 1s ) ) |
21 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 ·s 𝑦 ) = ( 𝐴 ·s 𝑧 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐴 ·s 𝑦 ) = 𝐵 ↔ ( 𝐴 ·s 𝑧 ) = 𝐵 ) ) |
23 |
22
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ↔ ∃ 𝑧 ∈ No ( 𝐴 ·s 𝑧 ) = 𝐵 ) |
24 |
16 20 23
|
3imtr4i |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ) |