Step |
Hyp |
Ref |
Expression |
1 |
|
norecdiv |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ) |
2 |
|
divsmo |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃* 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) → ∃* 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃* 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ) |
5 |
|
reu5 |
⊢ ( ∃! 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ↔ ( ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ∧ ∃* 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ) ) |
6 |
1 4 5
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃! 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 𝐵 ) |