Metamath Proof Explorer


Theorem noreceuw

Description: If a surreal has a reciprocal, then it has unique division. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion noreceuw ( ( ( 𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃ 𝑥 No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃! 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 norecdiv ( ( ( 𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃ 𝑥 No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃ 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 )
2 divsmo ( ( 𝐴 No 𝐴 ≠ 0s ) → ∃* 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 )
3 2 3adant3 ( ( 𝐴 No 𝐴 ≠ 0s𝐵 No ) → ∃* 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 )
4 3 adantr ( ( ( 𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃ 𝑥 No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃* 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 )
5 reu5 ( ∃! 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 ↔ ( ∃ 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 ∧ ∃* 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 ) )
6 1 4 5 sylanbrc ( ( ( 𝐴 No 𝐴 ≠ 0s𝐵 No ) ∧ ∃ 𝑥 No ( 𝐴 ·s 𝑥 ) = 1s ) → ∃! 𝑦 No ( 𝐴 ·s 𝑦 ) = 𝐵 )