Step |
Hyp |
Ref |
Expression |
1 |
|
normgt0 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
2 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
4 |
|
0re |
⊢ 0 ∈ ℝ |
5 |
|
leltne |
⊢ ( ( 0 ∈ ℝ ∧ ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) → ( 0 < ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
6 |
4 5
|
mp3an1 |
⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐴 ) ) → ( 0 < ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
7 |
2 3 6
|
syl2anc |
⊢ ( 𝐴 ∈ ℋ → ( 0 < ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
8 |
1 7
|
bitrd |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ ( normℎ ‘ 𝐴 ) ≠ 0 ) ) |
9 |
8
|
necon4bid |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ ↔ ( normℎ ‘ 𝐴 ) = 0 ) ) |
10 |
9
|
bicomd |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |