Metamath Proof Explorer


Theorem norm-i

Description: Theorem 3.3(i) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)

Ref Expression
Assertion norm-i ( 𝐴 ∈ ℋ → ( ( norm𝐴 ) = 0 ↔ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 normgt0 ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0 ↔ 0 < ( norm𝐴 ) ) )
2 normcl ( 𝐴 ∈ ℋ → ( norm𝐴 ) ∈ ℝ )
3 normge0 ( 𝐴 ∈ ℋ → 0 ≤ ( norm𝐴 ) )
4 0re 0 ∈ ℝ
5 leltne ( ( 0 ∈ ℝ ∧ ( norm𝐴 ) ∈ ℝ ∧ 0 ≤ ( norm𝐴 ) ) → ( 0 < ( norm𝐴 ) ↔ ( norm𝐴 ) ≠ 0 ) )
6 4 5 mp3an1 ( ( ( norm𝐴 ) ∈ ℝ ∧ 0 ≤ ( norm𝐴 ) ) → ( 0 < ( norm𝐴 ) ↔ ( norm𝐴 ) ≠ 0 ) )
7 2 3 6 syl2anc ( 𝐴 ∈ ℋ → ( 0 < ( norm𝐴 ) ↔ ( norm𝐴 ) ≠ 0 ) )
8 1 7 bitrd ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0 ↔ ( norm𝐴 ) ≠ 0 ) )
9 8 necon4bid ( 𝐴 ∈ ℋ → ( 𝐴 = 0 ↔ ( norm𝐴 ) = 0 ) )
10 9 bicomd ( 𝐴 ∈ ℋ → ( ( norm𝐴 ) = 0 ↔ 𝐴 = 0 ) )