Description: Theorem 3.3(i) of Beran p. 97. (Contributed by NM, 5-Sep-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | normcl.1 | ⊢ 𝐴 ∈ ℋ | |
Assertion | norm-i-i | ⊢ ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normcl.1 | ⊢ 𝐴 ∈ ℋ | |
2 | norm-i | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) |