| Step | Hyp | Ref | Expression | 
						
							| 1 |  | norm-ii.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | norm-ii.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 4 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 5 | 4 | cjrebi | ⊢ ( 1  ∈  ℝ  ↔  ( ∗ ‘ 1 )  =  1 ) | 
						
							| 6 | 3 5 | mpbi | ⊢ ( ∗ ‘ 1 )  =  1 | 
						
							| 7 | 6 | oveq1i | ⊢ ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  =  ( 1  ·  ( 𝐵  ·ih  𝐴 ) ) | 
						
							| 8 | 2 1 | hicli | ⊢ ( 𝐵  ·ih  𝐴 )  ∈  ℂ | 
						
							| 9 | 8 | mullidi | ⊢ ( 1  ·  ( 𝐵  ·ih  𝐴 ) )  =  ( 𝐵  ·ih  𝐴 ) | 
						
							| 10 | 7 9 | eqtri | ⊢ ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  =  ( 𝐵  ·ih  𝐴 ) | 
						
							| 11 | 1 2 | hicli | ⊢ ( 𝐴  ·ih  𝐵 )  ∈  ℂ | 
						
							| 12 | 11 | mullidi | ⊢ ( 1  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( 𝐴  ·ih  𝐵 ) | 
						
							| 13 | 10 12 | oveq12i | ⊢ ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  =  ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 14 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 15 | 4 2 1 14 | normlem7 | ⊢ ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  ≤  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) | 
						
							| 16 | 13 15 | eqbrtrri | ⊢ ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) )  ≤  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ - ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  =  - ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 18 | 4 2 1 17 | normlem2 | ⊢ - ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  ∈  ℝ | 
						
							| 19 | 4 | cjcli | ⊢ ( ∗ ‘ 1 )  ∈  ℂ | 
						
							| 20 | 19 8 | mulcli | ⊢ ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  ∈  ℂ | 
						
							| 21 | 4 11 | mulcli | ⊢ ( 1  ·  ( 𝐴  ·ih  𝐵 ) )  ∈  ℂ | 
						
							| 22 | 20 21 | addcli | ⊢ ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  ∈  ℂ | 
						
							| 23 | 22 | negrebi | ⊢ ( - ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  ∈  ℝ  ↔  ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 24 | 18 23 | mpbi | ⊢ ( ( ( ∗ ‘ 1 )  ·  ( 𝐵  ·ih  𝐴 ) )  +  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) )  ∈  ℝ | 
						
							| 25 | 13 24 | eqeltrri | ⊢ ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) )  ∈  ℝ | 
						
							| 26 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 27 |  | hiidge0 | ⊢ ( 𝐴  ∈   ℋ  →  0  ≤  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 28 | 1 27 | ax-mp | ⊢ 0  ≤  ( 𝐴  ·ih  𝐴 ) | 
						
							| 29 |  | hiidrcl | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  ·ih  𝐴 )  ∈  ℝ ) | 
						
							| 30 | 1 29 | ax-mp | ⊢ ( 𝐴  ·ih  𝐴 )  ∈  ℝ | 
						
							| 31 | 30 | sqrtcli | ⊢ ( 0  ≤  ( 𝐴  ·ih  𝐴 )  →  ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ∈  ℝ ) | 
						
							| 32 | 28 31 | ax-mp | ⊢ ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ∈  ℝ | 
						
							| 33 |  | hiidge0 | ⊢ ( 𝐵  ∈   ℋ  →  0  ≤  ( 𝐵  ·ih  𝐵 ) ) | 
						
							| 34 | 2 33 | ax-mp | ⊢ 0  ≤  ( 𝐵  ·ih  𝐵 ) | 
						
							| 35 |  | hiidrcl | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐵  ·ih  𝐵 )  ∈  ℝ ) | 
						
							| 36 | 2 35 | ax-mp | ⊢ ( 𝐵  ·ih  𝐵 )  ∈  ℝ | 
						
							| 37 | 36 | sqrtcli | ⊢ ( 0  ≤  ( 𝐵  ·ih  𝐵 )  →  ( √ ‘ ( 𝐵  ·ih  𝐵 ) )  ∈  ℝ ) | 
						
							| 38 | 34 37 | ax-mp | ⊢ ( √ ‘ ( 𝐵  ·ih  𝐵 ) )  ∈  ℝ | 
						
							| 39 | 32 38 | remulcli | ⊢ ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) )  ∈  ℝ | 
						
							| 40 | 26 39 | remulcli | ⊢ ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) )  ∈  ℝ | 
						
							| 41 | 30 36 | readdcli | ⊢ ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  ∈  ℝ | 
						
							| 42 | 25 40 41 | leadd2i | ⊢ ( ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) )  ≤  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) )  ↔  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) ) )  ≤  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) ) ) | 
						
							| 43 | 16 42 | mpbi | ⊢ ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) ) )  ≤  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) ) | 
						
							| 44 | 1 2 1 2 | normlem8 | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  =  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐵  ·ih  𝐴 ) ) ) | 
						
							| 45 | 11 8 | addcomi | ⊢ ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐵  ·ih  𝐴 ) )  =  ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 46 | 45 | oveq2i | ⊢ ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐵  ·ih  𝐴 ) ) )  =  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 47 | 44 46 | eqtri | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  =  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( ( 𝐵  ·ih  𝐴 )  +  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 48 | 32 | recni | ⊢ ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ∈  ℂ | 
						
							| 49 | 38 | recni | ⊢ ( √ ‘ ( 𝐵  ·ih  𝐵 ) )  ∈  ℂ | 
						
							| 50 | 48 49 | binom2i | ⊢ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) )  +  ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 ) ) | 
						
							| 51 | 48 | sqcli | ⊢ ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  ∈  ℂ | 
						
							| 52 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 53 | 48 49 | mulcli | ⊢ ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) )  ∈  ℂ | 
						
							| 54 | 52 53 | mulcli | ⊢ ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) )  ∈  ℂ | 
						
							| 55 | 49 | sqcli | ⊢ ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 )  ∈  ℂ | 
						
							| 56 | 51 54 55 | add32i | ⊢ ( ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) )  +  ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 ) )  =  ( ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  +  ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) ) | 
						
							| 57 | 30 | sqsqrti | ⊢ ( 0  ≤  ( 𝐴  ·ih  𝐴 )  →  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 58 | 28 57 | ax-mp | ⊢ ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) | 
						
							| 59 | 36 | sqsqrti | ⊢ ( 0  ≤  ( 𝐵  ·ih  𝐵 )  →  ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 )  =  ( 𝐵  ·ih  𝐵 ) ) | 
						
							| 60 | 34 59 | ax-mp | ⊢ ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 )  =  ( 𝐵  ·ih  𝐵 ) | 
						
							| 61 | 58 60 | oveq12i | ⊢ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  +  ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 ) )  =  ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) ) | 
						
							| 62 | 61 | oveq1i | ⊢ ( ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  +  ( ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ↑ 2 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) )  =  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) ) | 
						
							| 63 | 50 56 62 | 3eqtri | ⊢ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 )  =  ( ( ( 𝐴  ·ih  𝐴 )  +  ( 𝐵  ·ih  𝐵 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ·  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) ) | 
						
							| 64 | 43 47 63 | 3brtr4i | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  ≤  ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) | 
						
							| 65 | 1 2 | hvaddcli | ⊢ ( 𝐴  +ℎ  𝐵 )  ∈   ℋ | 
						
							| 66 |  | hiidge0 | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ∈   ℋ  →  0  ≤  ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) ) | 
						
							| 67 | 65 66 | ax-mp | ⊢ 0  ≤  ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) | 
						
							| 68 | 32 38 | readdcli | ⊢ ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) )  ∈  ℝ | 
						
							| 69 | 68 | sqge0i | ⊢ 0  ≤  ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) | 
						
							| 70 |  | hiidrcl | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ∈   ℋ  →  ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  ∈  ℝ ) | 
						
							| 71 | 65 70 | ax-mp | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  ∈  ℝ | 
						
							| 72 | 68 | resqcli | ⊢ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 )  ∈  ℝ | 
						
							| 73 | 71 72 | sqrtlei | ⊢ ( ( 0  ≤  ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  ∧  0  ≤  ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) )  →  ( ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  ≤  ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 )  ↔  ( √ ‘ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) )  ≤  ( √ ‘ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) ) ) ) | 
						
							| 74 | 67 69 73 | mp2an | ⊢ ( ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) )  ≤  ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 )  ↔  ( √ ‘ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) )  ≤  ( √ ‘ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) ) ) | 
						
							| 75 | 64 74 | mpbi | ⊢ ( √ ‘ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) )  ≤  ( √ ‘ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) ) | 
						
							| 76 | 30 | sqrtge0i | ⊢ ( 0  ≤  ( 𝐴  ·ih  𝐴 )  →  0  ≤  ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 77 | 28 76 | ax-mp | ⊢ 0  ≤  ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 78 | 36 | sqrtge0i | ⊢ ( 0  ≤  ( 𝐵  ·ih  𝐵 )  →  0  ≤  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) | 
						
							| 79 | 34 78 | ax-mp | ⊢ 0  ≤  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) | 
						
							| 80 | 32 38 | addge0i | ⊢ ( ( 0  ≤  ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  ∧  0  ≤  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) )  →  0  ≤  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) | 
						
							| 81 | 77 79 80 | mp2an | ⊢ 0  ≤  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) | 
						
							| 82 | 68 | sqrtsqi | ⊢ ( 0  ≤  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) )  →  ( √ ‘ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) )  =  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ) | 
						
							| 83 | 81 82 | ax-mp | ⊢ ( √ ‘ ( ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) ↑ 2 ) )  =  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) | 
						
							| 84 | 75 83 | breqtri | ⊢ ( √ ‘ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) )  ≤  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) | 
						
							| 85 |  | normval | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ∈   ℋ  →  ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) )  =  ( √ ‘ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) ) ) | 
						
							| 86 | 65 85 | ax-mp | ⊢ ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) )  =  ( √ ‘ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐴  +ℎ  𝐵 ) ) ) | 
						
							| 87 |  | normval | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 88 | 1 87 | ax-mp | ⊢ ( normℎ ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 89 |  | normval | ⊢ ( 𝐵  ∈   ℋ  →  ( normℎ ‘ 𝐵 )  =  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) | 
						
							| 90 | 2 89 | ax-mp | ⊢ ( normℎ ‘ 𝐵 )  =  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) | 
						
							| 91 | 88 90 | oveq12i | ⊢ ( ( normℎ ‘ 𝐴 )  +  ( normℎ ‘ 𝐵 ) )  =  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) )  +  ( √ ‘ ( 𝐵  ·ih  𝐵 ) ) ) | 
						
							| 92 | 84 86 91 | 3brtr4i | ⊢ ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) )  ≤  ( ( normℎ ‘ 𝐴 )  +  ( normℎ ‘ 𝐵 ) ) |