Step |
Hyp |
Ref |
Expression |
1 |
|
norm-iii.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
norm-iii.2 |
⊢ 𝐵 ∈ ℋ |
3 |
1 1 2 2
|
his35i |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
4 |
3
|
fveq2i |
⊢ ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) = ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) |
5 |
1
|
cjmulrcli |
⊢ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ |
6 |
|
hiidrcl |
⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) |
7 |
2 6
|
ax-mp |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℝ |
8 |
1
|
cjmulge0i |
⊢ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) |
9 |
|
hiidge0 |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( 𝐵 ·ih 𝐵 ) ) |
10 |
2 9
|
ax-mp |
⊢ 0 ≤ ( 𝐵 ·ih 𝐵 ) |
11 |
5 7 8 10
|
sqrtmulii |
⊢ ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
12 |
4 11
|
eqtri |
⊢ ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
13 |
1 2
|
hvmulcli |
⊢ ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ |
14 |
|
normval |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
15 |
13 14
|
ax-mp |
⊢ ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) |
16 |
|
absval |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
17 |
1 16
|
ax-mp |
⊢ ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
18 |
|
normval |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
19 |
2 18
|
ax-mp |
⊢ ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
20 |
17 19
|
oveq12i |
⊢ ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
21 |
12 15 20
|
3eqtr4i |
⊢ ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |