Description: The norm of a zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
2 | normval | ⊢ ( 0ℎ ∈ ℋ → ( normℎ ‘ 0ℎ ) = ( √ ‘ ( 0ℎ ·ih 0ℎ ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( normℎ ‘ 0ℎ ) = ( √ ‘ ( 0ℎ ·ih 0ℎ ) ) |
4 | hi01 | ⊢ ( 0ℎ ∈ ℋ → ( 0ℎ ·ih 0ℎ ) = 0 ) | |
5 | 4 | fveq2d | ⊢ ( 0ℎ ∈ ℋ → ( √ ‘ ( 0ℎ ·ih 0ℎ ) ) = ( √ ‘ 0 ) ) |
6 | 1 5 | ax-mp | ⊢ ( √ ‘ ( 0ℎ ·ih 0ℎ ) ) = ( √ ‘ 0 ) |
7 | sqrt0 | ⊢ ( √ ‘ 0 ) = 0 | |
8 | 3 6 7 | 3eqtri | ⊢ ( normℎ ‘ 0ℎ ) = 0 |