| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
|
normne0 |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) |
| 4 |
3
|
biimpar |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
| 5 |
2 4
|
rereccld |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
| 7 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐴 ∈ ℋ ) |
| 8 |
|
norm-iii |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 10 |
|
normgt0 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
| 11 |
10
|
biimpa |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
| 12 |
|
1re |
⊢ 1 ∈ ℝ |
| 13 |
|
0le1 |
⊢ 0 ≤ 1 |
| 14 |
|
divge0 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 15 |
12 13 14
|
mpanl12 |
⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 16 |
2 11 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 17 |
5 16
|
absidd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 18 |
17
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 19 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 21 |
20 4
|
recid2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ 𝐴 ) ) = 1 ) |
| 22 |
9 18 21
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) |