| Step | Hyp | Ref | Expression | 
						
							| 1 |  | norm1ex.1 | ⊢ 𝐻  ∈   Sℋ | 
						
							| 2 |  | neeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ≠  0ℎ  ↔  𝑧  ≠  0ℎ ) ) | 
						
							| 3 | 2 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  𝐻 𝑥  ≠  0ℎ  ↔  ∃ 𝑧  ∈  𝐻 𝑧  ≠  0ℎ ) | 
						
							| 4 | 1 | sheli | ⊢ ( 𝑧  ∈  𝐻  →  𝑧  ∈   ℋ ) | 
						
							| 5 |  | normcl | ⊢ ( 𝑧  ∈   ℋ  →  ( normℎ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑧  ∈  𝐻  →  ( normℎ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  ( normℎ ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 8 |  | normne0 | ⊢ ( 𝑧  ∈   ℋ  →  ( ( normℎ ‘ 𝑧 )  ≠  0  ↔  𝑧  ≠  0ℎ ) ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝑧  ∈  𝐻  →  ( ( normℎ ‘ 𝑧 )  ≠  0  ↔  𝑧  ≠  0ℎ ) ) | 
						
							| 10 | 9 | biimpar | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  ( normℎ ‘ 𝑧 )  ≠  0 ) | 
						
							| 11 | 7 10 | rereccld | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  ( 1  /  ( normℎ ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  ( 1  /  ( normℎ ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  𝑧  ∈  𝐻 ) | 
						
							| 14 |  | shmulcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  ( 1  /  ( normℎ ‘ 𝑧 ) )  ∈  ℂ  ∧  𝑧  ∈  𝐻 )  →  ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 15 | 1 14 | mp3an1 | ⊢ ( ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ∈  ℂ  ∧  𝑧  ∈  𝐻 )  →  ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 16 | 12 13 15 | syl2anc | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 )  ∈  𝐻 ) | 
						
							| 17 |  | norm1 | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑧  ≠  0ℎ )  →  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 ) )  =  1 ) | 
						
							| 18 | 4 17 | sylan | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 ) )  =  1 ) | 
						
							| 19 |  | fveqeq2 | ⊢ ( 𝑦  =  ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 )  →  ( ( normℎ ‘ 𝑦 )  =  1  ↔  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 ) )  =  1 ) ) | 
						
							| 20 | 19 | rspcev | ⊢ ( ( ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 )  ∈  𝐻  ∧  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝑧 ) )  ·ℎ  𝑧 ) )  =  1 )  →  ∃ 𝑦  ∈  𝐻 ( normℎ ‘ 𝑦 )  =  1 ) | 
						
							| 21 | 16 18 20 | syl2anc | ⊢ ( ( 𝑧  ∈  𝐻  ∧  𝑧  ≠  0ℎ )  →  ∃ 𝑦  ∈  𝐻 ( normℎ ‘ 𝑦 )  =  1 ) | 
						
							| 22 | 21 | rexlimiva | ⊢ ( ∃ 𝑧  ∈  𝐻 𝑧  ≠  0ℎ  →  ∃ 𝑦  ∈  𝐻 ( normℎ ‘ 𝑦 )  =  1 ) | 
						
							| 23 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 24 | 23 | neii | ⊢ ¬  1  =  0 | 
						
							| 25 |  | eqeq1 | ⊢ ( ( normℎ ‘ 𝑦 )  =  1  →  ( ( normℎ ‘ 𝑦 )  =  0  ↔  1  =  0 ) ) | 
						
							| 26 | 24 25 | mtbiri | ⊢ ( ( normℎ ‘ 𝑦 )  =  1  →  ¬  ( normℎ ‘ 𝑦 )  =  0 ) | 
						
							| 27 | 1 | sheli | ⊢ ( 𝑦  ∈  𝐻  →  𝑦  ∈   ℋ ) | 
						
							| 28 |  | norm-i | ⊢ ( 𝑦  ∈   ℋ  →  ( ( normℎ ‘ 𝑦 )  =  0  ↔  𝑦  =  0ℎ ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝑦  ∈  𝐻  →  ( ( normℎ ‘ 𝑦 )  =  0  ↔  𝑦  =  0ℎ ) ) | 
						
							| 30 | 29 | necon3bbid | ⊢ ( 𝑦  ∈  𝐻  →  ( ¬  ( normℎ ‘ 𝑦 )  =  0  ↔  𝑦  ≠  0ℎ ) ) | 
						
							| 31 | 26 30 | imbitrid | ⊢ ( 𝑦  ∈  𝐻  →  ( ( normℎ ‘ 𝑦 )  =  1  →  𝑦  ≠  0ℎ ) ) | 
						
							| 32 | 31 | reximia | ⊢ ( ∃ 𝑦  ∈  𝐻 ( normℎ ‘ 𝑦 )  =  1  →  ∃ 𝑦  ∈  𝐻 𝑦  ≠  0ℎ ) | 
						
							| 33 |  | neeq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ≠  0ℎ  ↔  𝑧  ≠  0ℎ ) ) | 
						
							| 34 | 33 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝐻 𝑦  ≠  0ℎ  ↔  ∃ 𝑧  ∈  𝐻 𝑧  ≠  0ℎ ) | 
						
							| 35 | 32 34 | sylib | ⊢ ( ∃ 𝑦  ∈  𝐻 ( normℎ ‘ 𝑦 )  =  1  →  ∃ 𝑧  ∈  𝐻 𝑧  ≠  0ℎ ) | 
						
							| 36 | 22 35 | impbii | ⊢ ( ∃ 𝑧  ∈  𝐻 𝑧  ≠  0ℎ  ↔  ∃ 𝑦  ∈  𝐻 ( normℎ ‘ 𝑦 )  =  1 ) | 
						
							| 37 | 3 36 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐻 𝑥  ≠  0ℎ  ↔  ∃ 𝑦  ∈  𝐻 ( normℎ ‘ 𝑦 )  =  1 ) |