Description: A normalized vector can exist only iff the Hilbert space has a nonzero vector. (Contributed by NM, 21-Jan-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | norm1hex | ⊢ ( ∃ 𝑥 ∈ ℋ 𝑥 ≠ 0ℎ ↔ ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helsh | ⊢ ℋ ∈ Sℋ | |
2 | 1 | norm1exi | ⊢ ( ∃ 𝑥 ∈ ℋ 𝑥 ≠ 0ℎ ↔ ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) |