Metamath Proof Explorer


Theorem norm1hex

Description: A normalized vector can exist only iff the Hilbert space has a nonzero vector. (Contributed by NM, 21-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion norm1hex ( ∃ 𝑥 ∈ ℋ 𝑥 ≠ 0 ↔ ∃ 𝑦 ∈ ℋ ( norm𝑦 ) = 1 )

Proof

Step Hyp Ref Expression
1 helsh ℋ ∈ S
2 1 norm1exi ( ∃ 𝑥 ∈ ℋ 𝑥 ≠ 0 ↔ ∃ 𝑦 ∈ ℋ ( norm𝑦 ) = 1 )