| Step |
Hyp |
Ref |
Expression |
| 1 |
|
norm3dif.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
norm3dif.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
norm3dif.3 |
⊢ 𝐶 ∈ ℋ |
| 4 |
1 3
|
hvsubcli |
⊢ ( 𝐴 −ℎ 𝐶 ) ∈ ℋ |
| 5 |
4
|
normcli |
⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℝ |
| 6 |
5
|
recni |
⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℂ |
| 7 |
2 3
|
hvsubcli |
⊢ ( 𝐵 −ℎ 𝐶 ) ∈ ℋ |
| 8 |
7
|
normcli |
⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℝ |
| 9 |
8
|
recni |
⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℂ |
| 10 |
6 9
|
negsubdi2i |
⊢ - ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) = ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 11 |
2 3 1
|
norm3difi |
⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 12 |
2 1
|
normsubi |
⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 13 |
12
|
oveq1i |
⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) = ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 14 |
11 13
|
breqtri |
⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 15 |
1 2
|
hvsubcli |
⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 16 |
15
|
normcli |
⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℝ |
| 17 |
8 5 16
|
lesubaddi |
⊢ ( ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ) |
| 18 |
14 17
|
mpbir |
⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 19 |
10 18
|
eqbrtri |
⊢ - ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 20 |
5 8
|
resubcli |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ∈ ℝ |
| 21 |
20 16
|
lenegcon1i |
⊢ ( - ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ - ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) |
| 22 |
19 21
|
mpbi |
⊢ - ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 23 |
1 3 2
|
norm3difi |
⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 24 |
5 8 16
|
lesubaddi |
⊢ ( ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) |
| 25 |
23 24
|
mpbir |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 26 |
20 16
|
abslei |
⊢ ( ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ ( - ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ∧ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 27 |
22 25 26
|
mpbir2an |
⊢ ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |