Step |
Hyp |
Ref |
Expression |
1 |
|
norm3dif |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |
2 |
|
normsub |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) = ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) ) |
3 |
2
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) = ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) ) |
4 |
3
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) = ( ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |
5 |
1 4
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |