Metamath Proof Explorer


Theorem norm3dif2

Description: Norm of differences around common element. (Contributed by NM, 18-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion norm3dif2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( norm ‘ ( 𝐴 𝐵 ) ) ≤ ( ( norm ‘ ( 𝐶 𝐴 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 norm3dif ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( norm ‘ ( 𝐴 𝐵 ) ) ≤ ( ( norm ‘ ( 𝐴 𝐶 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) )
2 normsub ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( norm ‘ ( 𝐴 𝐶 ) ) = ( norm ‘ ( 𝐶 𝐴 ) ) )
3 2 3adant2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( norm ‘ ( 𝐴 𝐶 ) ) = ( norm ‘ ( 𝐶 𝐴 ) ) )
4 3 oveq1d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( norm ‘ ( 𝐴 𝐶 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) = ( ( norm ‘ ( 𝐶 𝐴 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) )
5 1 4 breqtrd ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( norm ‘ ( 𝐴 𝐵 ) ) ≤ ( ( norm ‘ ( 𝐶 𝐴 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) )