Metamath Proof Explorer


Theorem norm3lem

Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
norm3lem.4 𝐷 ∈ ℝ
Assertion norm3lem ( ( ( norm ‘ ( 𝐴 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( norm ‘ ( 𝐶 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( norm ‘ ( 𝐴 𝐵 ) ) < 𝐷 )

Proof

Step Hyp Ref Expression
1 norm3dif.1 𝐴 ∈ ℋ
2 norm3dif.2 𝐵 ∈ ℋ
3 norm3dif.3 𝐶 ∈ ℋ
4 norm3lem.4 𝐷 ∈ ℝ
5 1 2 3 norm3difi ( norm ‘ ( 𝐴 𝐵 ) ) ≤ ( ( norm ‘ ( 𝐴 𝐶 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) )
6 1 3 hvsubcli ( 𝐴 𝐶 ) ∈ ℋ
7 6 normcli ( norm ‘ ( 𝐴 𝐶 ) ) ∈ ℝ
8 3 2 hvsubcli ( 𝐶 𝐵 ) ∈ ℋ
9 8 normcli ( norm ‘ ( 𝐶 𝐵 ) ) ∈ ℝ
10 4 rehalfcli ( 𝐷 / 2 ) ∈ ℝ
11 7 9 10 10 lt2addi ( ( ( norm ‘ ( 𝐴 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( norm ‘ ( 𝐶 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( ( norm ‘ ( 𝐴 𝐶 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) )
12 1 2 hvsubcli ( 𝐴 𝐵 ) ∈ ℋ
13 12 normcli ( norm ‘ ( 𝐴 𝐵 ) ) ∈ ℝ
14 7 9 readdcli ( ( norm ‘ ( 𝐴 𝐶 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) ∈ ℝ
15 10 10 readdcli ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) ∈ ℝ
16 13 14 15 lelttri ( ( ( norm ‘ ( 𝐴 𝐵 ) ) ≤ ( ( norm ‘ ( 𝐴 𝐶 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) ∧ ( ( norm ‘ ( 𝐴 𝐶 ) ) + ( norm ‘ ( 𝐶 𝐵 ) ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) ) → ( norm ‘ ( 𝐴 𝐵 ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) )
17 5 11 16 sylancr ( ( ( norm ‘ ( 𝐴 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( norm ‘ ( 𝐶 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( norm ‘ ( 𝐴 𝐵 ) ) < ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) )
18 10 recni ( 𝐷 / 2 ) ∈ ℂ
19 18 2timesi ( 2 · ( 𝐷 / 2 ) ) = ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) )
20 4 recni 𝐷 ∈ ℂ
21 2cn 2 ∈ ℂ
22 2ne0 2 ≠ 0
23 20 21 22 divcan2i ( 2 · ( 𝐷 / 2 ) ) = 𝐷
24 19 23 eqtr3i ( ( 𝐷 / 2 ) + ( 𝐷 / 2 ) ) = 𝐷
25 17 24 breqtrdi ( ( ( norm ‘ ( 𝐴 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( norm ‘ ( 𝐶 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( norm ‘ ( 𝐴 𝐵 ) ) < 𝐷 )