Step |
Hyp |
Ref |
Expression |
1 |
|
elspansn |
⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
3 |
|
oveq1 |
⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 ·ih 𝐵 ) = ( ( 𝑥 ·ℎ 𝐵 ) ·ih 𝐵 ) ) |
4 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
5 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℋ ) |
6 |
|
ax-his3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝐵 ) ·ih 𝐵 ) = ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) ) |
7 |
4 5 5 6
|
syl3anc |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 ·ℎ 𝐵 ) ·ih 𝐵 ) = ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) ) |
8 |
3 7
|
sylan9eqr |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( 𝐴 ·ih 𝐵 ) = ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) ) |
9 |
|
normsq |
⊢ ( 𝐵 ∈ ℋ → ( ( normℎ ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( normℎ ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) ) |
11 |
8 10
|
oveq12d |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) ) |
12 |
11
|
adantllr |
⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
14 |
|
hicl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih 𝐵 ) ∈ ℂ ) |
15 |
14
|
anidms |
⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℂ ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → ( 𝐵 ·ih 𝐵 ) ∈ ℂ ) |
17 |
|
his6 |
⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) ) |
18 |
17
|
necon3bid |
⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ↔ 𝐵 ≠ 0ℎ ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐵 ·ih 𝐵 ) ≠ 0 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → ( 𝐵 ·ih 𝐵 ) ≠ 0 ) |
21 |
13 16 20
|
divcan4d |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) = 𝑥 ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) = 𝑥 ) |
23 |
12 22
|
eqtrd |
⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = 𝑥 ) |
24 |
23
|
oveq1d |
⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = ( 𝑥 ·ℎ 𝐵 ) ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
26 |
24 25
|
eqtr4d |
⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) |
27 |
26
|
rexlimdva2 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) ) |
28 |
2 27
|
sylbid |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) ) |
29 |
28
|
3impia |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ∧ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) |