Description: Real closure of the norm of a vector. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normf | ⊢ normℎ : ℋ ⟶ ℝ | |
2 | 1 | ffvelrni | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |