Metamath Proof Explorer


Theorem normf

Description: The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion normf norm : ℋ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 dfhnorm2 norm = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) )
2 hiidrcl ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 𝑥 ) ∈ ℝ )
3 hiidge0 ( 𝑥 ∈ ℋ → 0 ≤ ( 𝑥 ·ih 𝑥 ) )
4 2 3 resqrtcld ( 𝑥 ∈ ℋ → ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ∈ ℝ )
5 1 4 fmpti norm : ℋ ⟶ ℝ