Description: The norm of a vector is nonnegative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | normge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
2 | hiidge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) | |
3 | 1 2 | sqrtge0d | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
4 | normval | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) | |
5 | 3 4 | breqtrrd | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |