Metamath Proof Explorer


Theorem normge0

Description: The norm of a vector is nonnegative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion normge0 ( 𝐴 ∈ ℋ → 0 ≤ ( norm𝐴 ) )

Proof

Step Hyp Ref Expression
1 hiidrcl ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ )
2 hiidge0 ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) )
3 1 2 sqrtge0d ( 𝐴 ∈ ℋ → 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) )
4 normval ( 𝐴 ∈ ℋ → ( norm𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) )
5 3 4 breqtrrd ( 𝐴 ∈ ℋ → 0 ≤ ( norm𝐴 ) )