Step |
Hyp |
Ref |
Expression |
1 |
|
hiidrcl |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
3 |
|
ax-his4 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
4 |
|
sqrtgt0 |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐴 ·ih 𝐴 ) ) → 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ → 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) ) |
8 |
|
hi01 |
⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) |
9 |
7 8
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( 𝐴 ·ih 𝐴 ) = 0 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = ( √ ‘ 0 ) ) |
11 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
12 |
10 11
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ) |
13 |
12
|
ex |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ) ) |
14 |
|
hiidge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |
15 |
1 14
|
resqrtcld |
⊢ ( 𝐴 ∈ ℋ → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ) |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
|
lttri3 |
⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ↔ ( ¬ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) < 0 ∧ ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
18 |
15 16 17
|
sylancl |
⊢ ( 𝐴 ∈ ℋ → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ↔ ( ¬ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) < 0 ∧ ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
19 |
|
simpr |
⊢ ( ( ¬ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) < 0 ∧ ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) → ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
20 |
18 19
|
syl6bi |
⊢ ( 𝐴 ∈ ℋ → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 → ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
21 |
13 20
|
syld |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
22 |
21
|
necon2ad |
⊢ ( 𝐴 ∈ ℋ → ( 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) → 𝐴 ≠ 0ℎ ) ) |
23 |
6 22
|
impbid |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
24 |
|
normval |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
25 |
24
|
breq2d |
⊢ ( 𝐴 ∈ ℋ → ( 0 < ( normℎ ‘ 𝐴 ) ↔ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
26 |
23 25
|
bitr4d |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |