| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							normlem1.1 | 
							⊢ 𝑆  ∈  ℂ  | 
						
						
							| 2 | 
							
								
							 | 
							normlem1.2 | 
							⊢ 𝐹  ∈   ℋ  | 
						
						
							| 3 | 
							
								
							 | 
							normlem1.3 | 
							⊢ 𝐺  ∈   ℋ  | 
						
						
							| 4 | 
							
								1 3
							 | 
							hvmulcli | 
							⊢ ( 𝑆  ·ℎ  𝐺 )  ∈   ℋ  | 
						
						
							| 5 | 
							
								2 4
							 | 
							hvsubvali | 
							⊢ ( 𝐹  −ℎ  ( 𝑆  ·ℎ  𝐺 ) )  =  ( 𝐹  +ℎ  ( - 1  ·ℎ  ( 𝑆  ·ℎ  𝐺 ) ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							mulm1i | 
							⊢ ( - 1  ·  𝑆 )  =  - 𝑆  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq1i | 
							⊢ ( ( - 1  ·  𝑆 )  ·ℎ  𝐺 )  =  ( - 𝑆  ·ℎ  𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							neg1cn | 
							⊢ - 1  ∈  ℂ  | 
						
						
							| 9 | 
							
								8 1 3
							 | 
							hvmulassi | 
							⊢ ( ( - 1  ·  𝑆 )  ·ℎ  𝐺 )  =  ( - 1  ·ℎ  ( 𝑆  ·ℎ  𝐺 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqtr3i | 
							⊢ ( - 𝑆  ·ℎ  𝐺 )  =  ( - 1  ·ℎ  ( 𝑆  ·ℎ  𝐺 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq2i | 
							⊢ ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  =  ( 𝐹  +ℎ  ( - 1  ·ℎ  ( 𝑆  ·ℎ  𝐺 ) ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							eqtr4i | 
							⊢ ( 𝐹  −ℎ  ( 𝑆  ·ℎ  𝐺 ) )  =  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  | 
						
						
							| 13 | 
							
								12 12
							 | 
							oveq12i | 
							⊢ ( ( 𝐹  −ℎ  ( 𝑆  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  −ℎ  ( 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							negcli | 
							⊢ - 𝑆  ∈  ℂ  | 
						
						
							| 15 | 
							
								14 3
							 | 
							hvmulcli | 
							⊢ ( - 𝑆  ·ℎ  𝐺 )  ∈   ℋ  | 
						
						
							| 16 | 
							
								2 15
							 | 
							hvaddcli | 
							⊢ ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  ∈   ℋ  | 
						
						
							| 17 | 
							
								
							 | 
							ax-his2 | 
							⊢ ( ( 𝐹  ∈   ℋ  ∧  ( - 𝑆  ·ℎ  𝐺 )  ∈   ℋ  ∧  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  ∈   ℋ )  →  ( ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐹  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  +  ( ( - 𝑆  ·ℎ  𝐺 )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) ) ) )  | 
						
						
							| 18 | 
							
								2 15 16 17
							 | 
							mp3an | 
							⊢ ( ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐹  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  +  ( ( - 𝑆  ·ℎ  𝐺 )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							his7 | 
							⊢ ( ( 𝐹  ∈   ℋ  ∧  𝐹  ∈   ℋ  ∧  ( - 𝑆  ·ℎ  𝐺 )  ∈   ℋ )  →  ( 𝐹  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐹  ·ih  𝐹 )  +  ( 𝐹  ·ih  ( - 𝑆  ·ℎ  𝐺 ) ) ) )  | 
						
						
							| 20 | 
							
								2 2 15 19
							 | 
							mp3an | 
							⊢ ( 𝐹  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐹  ·ih  𝐹 )  +  ( 𝐹  ·ih  ( - 𝑆  ·ℎ  𝐺 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							his5 | 
							⊢ ( ( - 𝑆  ∈  ℂ  ∧  𝐹  ∈   ℋ  ∧  𝐺  ∈   ℋ )  →  ( 𝐹  ·ih  ( - 𝑆  ·ℎ  𝐺 ) )  =  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  | 
						
						
							| 22 | 
							
								14 2 3 21
							 | 
							mp3an | 
							⊢ ( 𝐹  ·ih  ( - 𝑆  ·ℎ  𝐺 ) )  =  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							cjnegi | 
							⊢ ( ∗ ‘ - 𝑆 )  =  - ( ∗ ‘ 𝑆 )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq1i | 
							⊢ ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  =  ( - ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							eqtri | 
							⊢ ( 𝐹  ·ih  ( - 𝑆  ·ℎ  𝐺 ) )  =  ( - ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq2i | 
							⊢ ( ( 𝐹  ·ih  𝐹 )  +  ( 𝐹  ·ih  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐹  ·ih  𝐹 )  +  ( - ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  | 
						
						
							| 27 | 
							
								20 26
							 | 
							eqtri | 
							⊢ ( 𝐹  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐹  ·ih  𝐹 )  +  ( - ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							ax-his3 | 
							⊢ ( ( - 𝑆  ∈  ℂ  ∧  𝐺  ∈   ℋ  ∧  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) )  ∈   ℋ )  →  ( ( - 𝑆  ·ℎ  𝐺 )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( - 𝑆  ·  ( 𝐺  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) ) ) )  | 
						
						
							| 29 | 
							
								14 3 16 28
							 | 
							mp3an | 
							⊢ ( ( - 𝑆  ·ℎ  𝐺 )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( - 𝑆  ·  ( 𝐺  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							his7 | 
							⊢ ( ( 𝐺  ∈   ℋ  ∧  𝐹  ∈   ℋ  ∧  ( - 𝑆  ·ℎ  𝐺 )  ∈   ℋ )  →  ( 𝐺  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐺  ·ih  𝐹 )  +  ( 𝐺  ·ih  ( - 𝑆  ·ℎ  𝐺 ) ) ) )  | 
						
						
							| 31 | 
							
								3 2 15 30
							 | 
							mp3an | 
							⊢ ( 𝐺  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐺  ·ih  𝐹 )  +  ( 𝐺  ·ih  ( - 𝑆  ·ℎ  𝐺 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							his5 | 
							⊢ ( ( - 𝑆  ∈  ℂ  ∧  𝐺  ∈   ℋ  ∧  𝐺  ∈   ℋ )  →  ( 𝐺  ·ih  ( - 𝑆  ·ℎ  𝐺 ) )  =  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) )  | 
						
						
							| 33 | 
							
								14 3 3 32
							 | 
							mp3an | 
							⊢ ( 𝐺  ·ih  ( - 𝑆  ·ℎ  𝐺 ) )  =  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveq2i | 
							⊢ ( ( 𝐺  ·ih  𝐹 )  +  ( 𝐺  ·ih  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐺  ·ih  𝐹 )  +  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							eqtri | 
							⊢ ( 𝐺  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( 𝐺  ·ih  𝐹 )  +  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveq2i | 
							⊢ ( - 𝑆  ·  ( 𝐺  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) ) )  =  ( - 𝑆  ·  ( ( 𝐺  ·ih  𝐹 )  +  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) ) )  | 
						
						
							| 37 | 
							
								3 2
							 | 
							hicli | 
							⊢ ( 𝐺  ·ih  𝐹 )  ∈  ℂ  | 
						
						
							| 38 | 
							
								14
							 | 
							cjcli | 
							⊢ ( ∗ ‘ - 𝑆 )  ∈  ℂ  | 
						
						
							| 39 | 
							
								3 3
							 | 
							hicli | 
							⊢ ( 𝐺  ·ih  𝐺 )  ∈  ℂ  | 
						
						
							| 40 | 
							
								38 39
							 | 
							mulcli | 
							⊢ ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) )  ∈  ℂ  | 
						
						
							| 41 | 
							
								14 37 40
							 | 
							adddii | 
							⊢ ( - 𝑆  ·  ( ( 𝐺  ·ih  𝐹 )  +  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) ) )  =  ( ( - 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( - 𝑆  ·  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) ) )  | 
						
						
							| 42 | 
							
								14 38 39
							 | 
							mulassi | 
							⊢ ( ( - 𝑆  ·  ( ∗ ‘ - 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) )  =  ( - 𝑆  ·  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) )  | 
						
						
							| 43 | 
							
								23
							 | 
							oveq2i | 
							⊢ ( - 𝑆  ·  ( ∗ ‘ - 𝑆 ) )  =  ( - 𝑆  ·  - ( ∗ ‘ 𝑆 ) )  | 
						
						
							| 44 | 
							
								1
							 | 
							cjcli | 
							⊢ ( ∗ ‘ 𝑆 )  ∈  ℂ  | 
						
						
							| 45 | 
							
								1 44
							 | 
							mul2negi | 
							⊢ ( - 𝑆  ·  - ( ∗ ‘ 𝑆 ) )  =  ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							eqtri | 
							⊢ ( - 𝑆  ·  ( ∗ ‘ - 𝑆 ) )  =  ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq1i | 
							⊢ ( ( - 𝑆  ·  ( ∗ ‘ - 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) )  =  ( ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							eqtr3i | 
							⊢ ( - 𝑆  ·  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) )  =  ( ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							oveq2i | 
							⊢ ( ( - 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( - 𝑆  ·  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) ) )  =  ( ( - 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) ) )  | 
						
						
							| 50 | 
							
								41 49
							 | 
							eqtri | 
							⊢ ( - 𝑆  ·  ( ( 𝐺  ·ih  𝐹 )  +  ( ( ∗ ‘ - 𝑆 )  ·  ( 𝐺  ·ih  𝐺 ) ) ) )  =  ( ( - 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) ) )  | 
						
						
							| 51 | 
							
								29 36 50
							 | 
							3eqtri | 
							⊢ ( ( - 𝑆  ·ℎ  𝐺 )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( - 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) ) )  | 
						
						
							| 52 | 
							
								27 51
							 | 
							oveq12i | 
							⊢ ( ( 𝐹  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) )  +  ( ( - 𝑆  ·ℎ  𝐺 )  ·ih  ( 𝐹  +ℎ  ( - 𝑆  ·ℎ  𝐺 ) ) ) )  =  ( ( ( 𝐹  ·ih  𝐹 )  +  ( - ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  +  ( ( - 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) ) ) )  | 
						
						
							| 53 | 
							
								13 18 52
							 | 
							3eqtri | 
							⊢ ( ( 𝐹  −ℎ  ( 𝑆  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  −ℎ  ( 𝑆  ·ℎ  𝐺 ) ) )  =  ( ( ( 𝐹  ·ih  𝐹 )  +  ( - ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  +  ( ( - 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( 𝑆  ·  ( ∗ ‘ 𝑆 ) )  ·  ( 𝐺  ·ih  𝐺 ) ) ) )  |