| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normlem1.1 | ⊢ 𝑆  ∈  ℂ | 
						
							| 2 |  | normlem1.2 | ⊢ 𝐹  ∈   ℋ | 
						
							| 3 |  | normlem1.3 | ⊢ 𝐺  ∈   ℋ | 
						
							| 4 |  | normlem2.4 | ⊢ 𝐵  =  - ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) | 
						
							| 5 | 1 | cjcli | ⊢ ( ∗ ‘ 𝑆 )  ∈  ℂ | 
						
							| 6 | 2 3 | hicli | ⊢ ( 𝐹  ·ih  𝐺 )  ∈  ℂ | 
						
							| 7 | 5 6 | mulcli | ⊢ ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  ∈  ℂ | 
						
							| 8 | 3 2 | hicli | ⊢ ( 𝐺  ·ih  𝐹 )  ∈  ℂ | 
						
							| 9 | 1 8 | mulcli | ⊢ ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  ∈  ℂ | 
						
							| 10 | 7 9 | cjaddi | ⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) )  =  ( ( ∗ ‘ ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  +  ( ∗ ‘ ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) ) | 
						
							| 11 | 1 | cjcji | ⊢ ( ∗ ‘ ( ∗ ‘ 𝑆 ) )  =  𝑆 | 
						
							| 12 | 11 | eqcomi | ⊢ 𝑆  =  ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) | 
						
							| 13 | 3 2 | his1i | ⊢ ( 𝐺  ·ih  𝐹 )  =  ( ∗ ‘ ( 𝐹  ·ih  𝐺 ) ) | 
						
							| 14 | 12 13 | oveq12i | ⊢ ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  =  ( ( ∗ ‘ ( ∗ ‘ 𝑆 ) )  ·  ( ∗ ‘ ( 𝐹  ·ih  𝐺 ) ) ) | 
						
							| 15 | 5 6 | cjmuli | ⊢ ( ∗ ‘ ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  =  ( ( ∗ ‘ ( ∗ ‘ 𝑆 ) )  ·  ( ∗ ‘ ( 𝐹  ·ih  𝐺 ) ) ) | 
						
							| 16 | 14 15 | eqtr4i | ⊢ ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  =  ( ∗ ‘ ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) ) | 
						
							| 17 | 2 3 | his1i | ⊢ ( 𝐹  ·ih  𝐺 )  =  ( ∗ ‘ ( 𝐺  ·ih  𝐹 ) ) | 
						
							| 18 | 17 | oveq2i | ⊢ ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  =  ( ( ∗ ‘ 𝑆 )  ·  ( ∗ ‘ ( 𝐺  ·ih  𝐹 ) ) ) | 
						
							| 19 | 1 8 | cjmuli | ⊢ ( ∗ ‘ ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) )  =  ( ( ∗ ‘ 𝑆 )  ·  ( ∗ ‘ ( 𝐺  ·ih  𝐹 ) ) ) | 
						
							| 20 | 18 19 | eqtr4i | ⊢ ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  =  ( ∗ ‘ ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) | 
						
							| 21 | 16 20 | oveq12i | ⊢ ( ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  =  ( ( ∗ ‘ ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) )  +  ( ∗ ‘ ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) ) | 
						
							| 22 | 10 21 | eqtr4i | ⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) )  =  ( ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) ) | 
						
							| 23 | 7 9 | addcomi | ⊢ ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) )  =  ( ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) )  +  ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) ) ) | 
						
							| 24 | 22 23 | eqtr4i | ⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) )  =  ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) | 
						
							| 25 | 7 9 | addcli | ⊢ ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) )  ∈  ℂ | 
						
							| 26 | 25 | cjrebi | ⊢ ( ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) )  ∈  ℝ  ↔  ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) )  =  ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) ) | 
						
							| 27 | 24 26 | mpbir | ⊢ ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) )  ∈  ℝ | 
						
							| 28 | 27 | renegcli | ⊢ - ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) )  ∈  ℝ | 
						
							| 29 | 4 28 | eqeltri | ⊢ 𝐵  ∈  ℝ |