Step |
Hyp |
Ref |
Expression |
1 |
|
normlem1.1 |
⊢ 𝑆 ∈ ℂ |
2 |
|
normlem1.2 |
⊢ 𝐹 ∈ ℋ |
3 |
|
normlem1.3 |
⊢ 𝐺 ∈ ℋ |
4 |
|
normlem2.4 |
⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) |
5 |
1
|
cjcli |
⊢ ( ∗ ‘ 𝑆 ) ∈ ℂ |
6 |
2 3
|
hicli |
⊢ ( 𝐹 ·ih 𝐺 ) ∈ ℂ |
7 |
5 6
|
mulcli |
⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ∈ ℂ |
8 |
3 2
|
hicli |
⊢ ( 𝐺 ·ih 𝐹 ) ∈ ℂ |
9 |
1 8
|
mulcli |
⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ∈ ℂ |
10 |
7 9
|
cjaddi |
⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
11 |
1
|
cjcji |
⊢ ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) = 𝑆 |
12 |
11
|
eqcomi |
⊢ 𝑆 = ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) |
13 |
3 2
|
his1i |
⊢ ( 𝐺 ·ih 𝐹 ) = ( ∗ ‘ ( 𝐹 ·ih 𝐺 ) ) |
14 |
12 13
|
oveq12i |
⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) · ( ∗ ‘ ( 𝐹 ·ih 𝐺 ) ) ) |
15 |
5 6
|
cjmuli |
⊢ ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) · ( ∗ ‘ ( 𝐹 ·ih 𝐺 ) ) ) |
16 |
14 15
|
eqtr4i |
⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) = ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
17 |
2 3
|
his1i |
⊢ ( 𝐹 ·ih 𝐺 ) = ( ∗ ‘ ( 𝐺 ·ih 𝐹 ) ) |
18 |
17
|
oveq2i |
⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) = ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ ( 𝐺 ·ih 𝐹 ) ) ) |
19 |
1 8
|
cjmuli |
⊢ ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) = ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ ( 𝐺 ·ih 𝐹 ) ) ) |
20 |
18 19
|
eqtr4i |
⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) = ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) |
21 |
16 20
|
oveq12i |
⊢ ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
22 |
10 21
|
eqtr4i |
⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
23 |
7 9
|
addcomi |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) = ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
24 |
22 23
|
eqtr4i |
⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) |
25 |
7 9
|
addcli |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ |
26 |
25
|
cjrebi |
⊢ ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ ↔ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
27 |
24 26
|
mpbir |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
28 |
27
|
renegcli |
⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
29 |
4 28
|
eqeltri |
⊢ 𝐵 ∈ ℝ |