Step |
Hyp |
Ref |
Expression |
1 |
|
normlem1.1 |
⊢ 𝑆 ∈ ℂ |
2 |
|
normlem1.2 |
⊢ 𝐹 ∈ ℋ |
3 |
|
normlem1.3 |
⊢ 𝐺 ∈ ℋ |
4 |
|
normlem2.4 |
⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) |
5 |
|
normlem3.5 |
⊢ 𝐴 = ( 𝐺 ·ih 𝐺 ) |
6 |
|
normlem3.6 |
⊢ 𝐶 = ( 𝐹 ·ih 𝐹 ) |
7 |
|
normlem4.7 |
⊢ 𝑅 ∈ ℝ |
8 |
|
normlem4.8 |
⊢ ( abs ‘ 𝑆 ) = 1 |
9 |
7
|
recni |
⊢ 𝑅 ∈ ℂ |
10 |
1 9
|
mulcli |
⊢ ( 𝑆 · 𝑅 ) ∈ ℂ |
11 |
10 3
|
hvmulcli |
⊢ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ∈ ℋ |
12 |
2 11
|
hvsubcli |
⊢ ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ∈ ℋ |
13 |
|
hiidge0 |
⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ∈ ℋ → 0 ≤ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ 0 ≤ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) |
15 |
1 2 3 4 5 6 7 8
|
normlem4 |
⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) = ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) |
16 |
14 15
|
breqtri |
⊢ 0 ≤ ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) |