Step |
Hyp |
Ref |
Expression |
1 |
|
normlem1.1 |
⊢ 𝑆 ∈ ℂ |
2 |
|
normlem1.2 |
⊢ 𝐹 ∈ ℋ |
3 |
|
normlem1.3 |
⊢ 𝐺 ∈ ℋ |
4 |
|
normlem7.4 |
⊢ ( abs ‘ 𝑆 ) = 1 |
5 |
|
eqid |
⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) |
6 |
1 2 3 5
|
normlem2 |
⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
7 |
1
|
cjcli |
⊢ ( ∗ ‘ 𝑆 ) ∈ ℂ |
8 |
2 3
|
hicli |
⊢ ( 𝐹 ·ih 𝐺 ) ∈ ℂ |
9 |
7 8
|
mulcli |
⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ∈ ℂ |
10 |
3 2
|
hicli |
⊢ ( 𝐺 ·ih 𝐹 ) ∈ ℂ |
11 |
1 10
|
mulcli |
⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ∈ ℂ |
12 |
9 11
|
addcli |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ |
13 |
12
|
negrebi |
⊢ ( - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ ↔ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ ) |
14 |
6 13
|
mpbi |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
15 |
14
|
leabsi |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
16 |
12
|
absnegi |
⊢ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( abs ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
17 |
15 16
|
breqtrri |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
18 |
|
eqid |
⊢ ( 𝐺 ·ih 𝐺 ) = ( 𝐺 ·ih 𝐺 ) |
19 |
|
eqid |
⊢ ( 𝐹 ·ih 𝐹 ) = ( 𝐹 ·ih 𝐹 ) |
20 |
1 2 3 5 18 19 4
|
normlem6 |
⊢ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) |
21 |
12
|
negcli |
⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ |
22 |
21
|
abscli |
⊢ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ∈ ℝ |
23 |
|
2re |
⊢ 2 ∈ ℝ |
24 |
|
hiidge0 |
⊢ ( 𝐺 ∈ ℋ → 0 ≤ ( 𝐺 ·ih 𝐺 ) ) |
25 |
|
hiidrcl |
⊢ ( 𝐺 ∈ ℋ → ( 𝐺 ·ih 𝐺 ) ∈ ℝ ) |
26 |
3 25
|
ax-mp |
⊢ ( 𝐺 ·ih 𝐺 ) ∈ ℝ |
27 |
26
|
sqrtcli |
⊢ ( 0 ≤ ( 𝐺 ·ih 𝐺 ) → ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) ∈ ℝ ) |
28 |
3 24 27
|
mp2b |
⊢ ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) ∈ ℝ |
29 |
|
hiidge0 |
⊢ ( 𝐹 ∈ ℋ → 0 ≤ ( 𝐹 ·ih 𝐹 ) ) |
30 |
|
hiidrcl |
⊢ ( 𝐹 ∈ ℋ → ( 𝐹 ·ih 𝐹 ) ∈ ℝ ) |
31 |
2 30
|
ax-mp |
⊢ ( 𝐹 ·ih 𝐹 ) ∈ ℝ |
32 |
31
|
sqrtcli |
⊢ ( 0 ≤ ( 𝐹 ·ih 𝐹 ) → ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ∈ ℝ ) |
33 |
2 29 32
|
mp2b |
⊢ ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ∈ ℝ |
34 |
28 33
|
remulcli |
⊢ ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ∈ ℝ |
35 |
23 34
|
remulcli |
⊢ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ∈ ℝ |
36 |
14 22 35
|
letri |
⊢ ( ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ∧ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ) |
37 |
17 20 36
|
mp2an |
⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) |