Step |
Hyp |
Ref |
Expression |
1 |
|
normlem7t.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
normlem7t.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
fveq2 |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ∗ ‘ 𝑆 ) = ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) = ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
6 |
4 5
|
oveq12d |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) + ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) + ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ↔ ( ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( 𝑆 ∈ ℂ ↔ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ) ) |
9 |
|
fveq2 |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( abs ‘ 𝑆 ) = ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( abs ‘ 𝑆 ) = 1 ↔ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) ↔ ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ∧ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) ) |
12 |
|
eleq1 |
⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( 1 ∈ ℂ ↔ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ) ) |
13 |
|
fveq2 |
⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( abs ‘ 1 ) = ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) ) |
14 |
13
|
eqeq1d |
⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( abs ‘ 1 ) = 1 ↔ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) |
15 |
12 14
|
anbi12d |
⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( 1 ∈ ℂ ∧ ( abs ‘ 1 ) = 1 ) ↔ ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ∧ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) ) |
16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
17 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
18 |
16 17
|
pm3.2i |
⊢ ( 1 ∈ ℂ ∧ ( abs ‘ 1 ) = 1 ) |
19 |
11 15 18
|
elimhyp |
⊢ ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ∧ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) |
20 |
19
|
simpli |
⊢ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ |
21 |
19
|
simpri |
⊢ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 |
22 |
20 1 2 21
|
normlem7 |
⊢ ( ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
23 |
7 22
|
dedth |
⊢ ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) + ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |