| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normlem8.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | normlem8.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | normlem8.3 | ⊢ 𝐶  ∈   ℋ | 
						
							| 4 |  | normlem8.4 | ⊢ 𝐷  ∈   ℋ | 
						
							| 5 |  | his7 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ )  →  ( 𝐴  ·ih  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐴  ·ih  𝐶 )  +  ( 𝐴  ·ih  𝐷 ) ) ) | 
						
							| 6 | 1 3 4 5 | mp3an | ⊢ ( 𝐴  ·ih  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐴  ·ih  𝐶 )  +  ( 𝐴  ·ih  𝐷 ) ) | 
						
							| 7 |  | his7 | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ )  →  ( 𝐵  ·ih  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐵  ·ih  𝐶 )  +  ( 𝐵  ·ih  𝐷 ) ) ) | 
						
							| 8 | 2 3 4 7 | mp3an | ⊢ ( 𝐵  ·ih  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐵  ·ih  𝐶 )  +  ( 𝐵  ·ih  𝐷 ) ) | 
						
							| 9 | 6 8 | oveq12i | ⊢ ( ( 𝐴  ·ih  ( 𝐶  +ℎ  𝐷 ) )  +  ( 𝐵  ·ih  ( 𝐶  +ℎ  𝐷 ) ) )  =  ( ( ( 𝐴  ·ih  𝐶 )  +  ( 𝐴  ·ih  𝐷 ) )  +  ( ( 𝐵  ·ih  𝐶 )  +  ( 𝐵  ·ih  𝐷 ) ) ) | 
						
							| 10 | 3 4 | hvaddcli | ⊢ ( 𝐶  +ℎ  𝐷 )  ∈   ℋ | 
						
							| 11 |  | ax-his2 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  ( 𝐶  +ℎ  𝐷 )  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐴  ·ih  ( 𝐶  +ℎ  𝐷 ) )  +  ( 𝐵  ·ih  ( 𝐶  +ℎ  𝐷 ) ) ) ) | 
						
							| 12 | 1 2 10 11 | mp3an | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( 𝐴  ·ih  ( 𝐶  +ℎ  𝐷 ) )  +  ( 𝐵  ·ih  ( 𝐶  +ℎ  𝐷 ) ) ) | 
						
							| 13 | 1 3 | hicli | ⊢ ( 𝐴  ·ih  𝐶 )  ∈  ℂ | 
						
							| 14 | 2 4 | hicli | ⊢ ( 𝐵  ·ih  𝐷 )  ∈  ℂ | 
						
							| 15 | 1 4 | hicli | ⊢ ( 𝐴  ·ih  𝐷 )  ∈  ℂ | 
						
							| 16 | 2 3 | hicli | ⊢ ( 𝐵  ·ih  𝐶 )  ∈  ℂ | 
						
							| 17 | 13 14 15 16 | add42i | ⊢ ( ( ( 𝐴  ·ih  𝐶 )  +  ( 𝐵  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐵  ·ih  𝐶 ) ) )  =  ( ( ( 𝐴  ·ih  𝐶 )  +  ( 𝐴  ·ih  𝐷 ) )  +  ( ( 𝐵  ·ih  𝐶 )  +  ( 𝐵  ·ih  𝐷 ) ) ) | 
						
							| 18 | 9 12 17 | 3eqtr4i | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ·ih  ( 𝐶  +ℎ  𝐷 ) )  =  ( ( ( 𝐴  ·ih  𝐶 )  +  ( 𝐵  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐵  ·ih  𝐶 ) ) ) |