Step |
Hyp |
Ref |
Expression |
1 |
|
normlem8.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
normlem8.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
normlem8.3 |
⊢ 𝐶 ∈ ℋ |
4 |
|
normlem8.4 |
⊢ 𝐷 ∈ ℋ |
5 |
1 2
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
6 |
3 4
|
hvsubvali |
⊢ ( 𝐶 −ℎ 𝐷 ) = ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) |
7 |
5 6
|
oveq12i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
8 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
9 |
8 2
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
10 |
8 4
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐷 ) ∈ ℋ |
11 |
1 9 3 10
|
normlem8 |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) + ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) |
12 |
|
ax-his3 |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐷 ) ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) = ( - 1 · ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) ) ) |
13 |
8 2 10 12
|
mp3an |
⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) = ( - 1 · ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) ) |
14 |
|
his5 |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) |
15 |
8 2 4 14
|
mp3an |
⊢ ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) |
16 |
15
|
oveq2i |
⊢ ( - 1 · ( 𝐵 ·ih ( - 1 ·ℎ 𝐷 ) ) ) = ( - 1 · ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) |
17 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
18 |
|
cjre |
⊢ ( - 1 ∈ ℝ → ( ∗ ‘ - 1 ) = - 1 ) |
19 |
17 18
|
ax-mp |
⊢ ( ∗ ‘ - 1 ) = - 1 |
20 |
19
|
oveq2i |
⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = ( - 1 · - 1 ) |
21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
22 |
21 21
|
mul2negi |
⊢ ( - 1 · - 1 ) = ( 1 · 1 ) |
23 |
21
|
mulid2i |
⊢ ( 1 · 1 ) = 1 |
24 |
20 22 23
|
3eqtri |
⊢ ( - 1 · ( ∗ ‘ - 1 ) ) = 1 |
25 |
24
|
oveq1i |
⊢ ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( 𝐵 ·ih 𝐷 ) ) = ( 1 · ( 𝐵 ·ih 𝐷 ) ) |
26 |
8
|
cjcli |
⊢ ( ∗ ‘ - 1 ) ∈ ℂ |
27 |
2 4
|
hicli |
⊢ ( 𝐵 ·ih 𝐷 ) ∈ ℂ |
28 |
8 26 27
|
mulassi |
⊢ ( ( - 1 · ( ∗ ‘ - 1 ) ) · ( 𝐵 ·ih 𝐷 ) ) = ( - 1 · ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) |
29 |
27
|
mulid2i |
⊢ ( 1 · ( 𝐵 ·ih 𝐷 ) ) = ( 𝐵 ·ih 𝐷 ) |
30 |
25 28 29
|
3eqtr3i |
⊢ ( - 1 · ( ( ∗ ‘ - 1 ) · ( 𝐵 ·ih 𝐷 ) ) ) = ( 𝐵 ·ih 𝐷 ) |
31 |
13 16 30
|
3eqtri |
⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) = ( 𝐵 ·ih 𝐷 ) |
32 |
31
|
oveq2i |
⊢ ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) |
33 |
|
his5 |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐴 ·ih 𝐷 ) ) ) |
34 |
8 1 4 33
|
mp3an |
⊢ ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ - 1 ) · ( 𝐴 ·ih 𝐷 ) ) |
35 |
19
|
oveq1i |
⊢ ( ( ∗ ‘ - 1 ) · ( 𝐴 ·ih 𝐷 ) ) = ( - 1 · ( 𝐴 ·ih 𝐷 ) ) |
36 |
1 4
|
hicli |
⊢ ( 𝐴 ·ih 𝐷 ) ∈ ℂ |
37 |
36
|
mulm1i |
⊢ ( - 1 · ( 𝐴 ·ih 𝐷 ) ) = - ( 𝐴 ·ih 𝐷 ) |
38 |
34 35 37
|
3eqtri |
⊢ ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) = - ( 𝐴 ·ih 𝐷 ) |
39 |
|
ax-his3 |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = ( - 1 · ( 𝐵 ·ih 𝐶 ) ) ) |
40 |
8 2 3 39
|
mp3an |
⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = ( - 1 · ( 𝐵 ·ih 𝐶 ) ) |
41 |
2 3
|
hicli |
⊢ ( 𝐵 ·ih 𝐶 ) ∈ ℂ |
42 |
41
|
mulm1i |
⊢ ( - 1 · ( 𝐵 ·ih 𝐶 ) ) = - ( 𝐵 ·ih 𝐶 ) |
43 |
40 42
|
eqtri |
⊢ ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = - ( 𝐵 ·ih 𝐶 ) |
44 |
38 43
|
oveq12i |
⊢ ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) = ( - ( 𝐴 ·ih 𝐷 ) + - ( 𝐵 ·ih 𝐶 ) ) |
45 |
36 41
|
negdii |
⊢ - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) = ( - ( 𝐴 ·ih 𝐷 ) + - ( 𝐵 ·ih 𝐶 ) ) |
46 |
44 45
|
eqtr4i |
⊢ ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) = - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) |
47 |
32 46
|
oveq12i |
⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) + ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
48 |
1 3
|
hicli |
⊢ ( 𝐴 ·ih 𝐶 ) ∈ ℂ |
49 |
48 27
|
addcli |
⊢ ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) ∈ ℂ |
50 |
36 41
|
addcli |
⊢ ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ∈ ℂ |
51 |
49 50
|
negsubi |
⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) + - ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) − ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
52 |
47 51
|
eqtri |
⊢ ( ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih ( - 1 ·ℎ 𝐷 ) ) ) + ( ( 𝐴 ·ih ( - 1 ·ℎ 𝐷 ) ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) − ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
53 |
7 11 52
|
3eqtri |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐶 −ℎ 𝐷 ) ) = ( ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐷 ) ) − ( ( 𝐴 ·ih 𝐷 ) + ( 𝐵 ·ih 𝐶 ) ) ) |