Description: A norm is nonzero iff its argument is a nonzero vector. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | normne0 | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norm-i | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) | |
2 | 1 | necon3bid | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) |