Metamath Proof Explorer


Theorem normne0

Description: A norm is nonzero iff its argument is a nonzero vector. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion normne0 ( 𝐴 ∈ ℋ → ( ( norm𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 norm-i ( 𝐴 ∈ ℋ → ( ( norm𝐴 ) = 0 ↔ 𝐴 = 0 ) )
2 1 necon3bid ( 𝐴 ∈ ℋ → ( ( norm𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) )