| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hv0cl | ⊢ 0ℎ  ∈   ℋ | 
						
							| 2 |  | normsub | ⊢ ( ( 0ℎ  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( normℎ ‘ ( 0ℎ  −ℎ  𝐴 ) )  =  ( normℎ ‘ ( 𝐴  −ℎ  0ℎ ) ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ ( 0ℎ  −ℎ  𝐴 ) )  =  ( normℎ ‘ ( 𝐴  −ℎ  0ℎ ) ) ) | 
						
							| 4 |  | hv2neg | ⊢ ( 𝐴  ∈   ℋ  →  ( 0ℎ  −ℎ  𝐴 )  =  ( - 1  ·ℎ  𝐴 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ ( 0ℎ  −ℎ  𝐴 ) )  =  ( normℎ ‘ ( - 1  ·ℎ  𝐴 ) ) ) | 
						
							| 6 |  | hvsub0 | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  −ℎ  0ℎ )  =  𝐴 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ ( 𝐴  −ℎ  0ℎ ) )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 8 | 3 5 7 | 3eqtr3d | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ ( - 1  ·ℎ  𝐴 ) )  =  ( normℎ ‘ 𝐴 ) ) |