| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normpar2.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
normpar2.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
normpar2.3 |
⊢ 𝐶 ∈ ℋ |
| 4 |
1 2
|
hvaddcli |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 5 |
|
2cn |
⊢ 2 ∈ ℂ |
| 6 |
5 3
|
hvmulcli |
⊢ ( 2 ·ℎ 𝐶 ) ∈ ℋ |
| 7 |
4 6
|
hvsubcli |
⊢ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ∈ ℋ |
| 8 |
7
|
normcli |
⊢ ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ∈ ℝ |
| 9 |
8
|
resqcli |
⊢ ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 10 |
9
|
recni |
⊢ ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 11 |
1 2
|
hvsubcli |
⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 12 |
11
|
normcli |
⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℝ |
| 13 |
12
|
resqcli |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ∈ ℝ |
| 14 |
13
|
recni |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ∈ ℂ |
| 15 |
|
4cn |
⊢ 4 ∈ ℂ |
| 16 |
1 3
|
hvsubcli |
⊢ ( 𝐴 −ℎ 𝐶 ) ∈ ℋ |
| 17 |
16
|
normcli |
⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℝ |
| 18 |
17
|
resqcli |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℝ |
| 19 |
18
|
recni |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℂ |
| 20 |
15 19
|
mulcli |
⊢ ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) ∈ ℂ |
| 21 |
2 3
|
hvsubcli |
⊢ ( 𝐵 −ℎ 𝐶 ) ∈ ℋ |
| 22 |
21
|
normcli |
⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℝ |
| 23 |
22
|
resqcli |
⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℝ |
| 24 |
23
|
recni |
⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℂ |
| 25 |
15 24
|
mulcli |
⊢ ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ∈ ℂ |
| 26 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 27 |
20 25 5 26
|
divdiri |
⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) + ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) ) |
| 28 |
20 25
|
addcomi |
⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) = ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 29 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 30 |
29 6
|
hvmulcli |
⊢ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ∈ ℋ |
| 31 |
29 11
|
hvmulcli |
⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℋ |
| 32 |
4 30 31
|
hvadd32i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 33 |
4 6
|
hvsubvali |
⊢ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 34 |
33
|
oveq1i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 35 |
5 2
|
hvmulcli |
⊢ ( 2 ·ℎ 𝐵 ) ∈ ℋ |
| 36 |
35 6
|
hvsubvali |
⊢ ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 37 |
1 2
|
hvcomi |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
| 38 |
1 2
|
hvnegdii |
⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) |
| 39 |
37 38
|
oveq12i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( 𝐵 +ℎ 𝐴 ) +ℎ ( 𝐵 −ℎ 𝐴 ) ) |
| 40 |
2 1
|
hvsubcan2i |
⊢ ( ( 𝐵 +ℎ 𝐴 ) +ℎ ( 𝐵 −ℎ 𝐴 ) ) = ( 2 ·ℎ 𝐵 ) |
| 41 |
39 40
|
eqtri |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( 2 ·ℎ 𝐵 ) |
| 42 |
41
|
oveq1i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) = ( ( 2 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 43 |
36 42
|
eqtr4i |
⊢ ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 44 |
32 34 43
|
3eqtr4i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 45 |
7 11
|
hvsubvali |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 46 |
5 2 3
|
hvsubdistr1i |
⊢ ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 47 |
44 45 46
|
3eqtr4i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) |
| 48 |
47
|
fveq2i |
⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( normℎ ‘ ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 49 |
5 21
|
norm-iii-i |
⊢ ( normℎ ‘ ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) ) = ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 50 |
|
0le2 |
⊢ 0 ≤ 2 |
| 51 |
|
2re |
⊢ 2 ∈ ℝ |
| 52 |
51
|
absidi |
⊢ ( 0 ≤ 2 → ( abs ‘ 2 ) = 2 ) |
| 53 |
50 52
|
ax-mp |
⊢ ( abs ‘ 2 ) = 2 |
| 54 |
53
|
oveq1i |
⊢ ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 55 |
48 49 54
|
3eqtri |
⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 56 |
55
|
oveq1i |
⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ↑ 2 ) |
| 57 |
22
|
recni |
⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℂ |
| 58 |
5 57
|
sqmuli |
⊢ ( ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 59 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 60 |
59
|
oveq1i |
⊢ ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 61 |
56 58 60
|
3eqtri |
⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 62 |
1 2
|
hvsubcan2i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ 𝐴 ) |
| 63 |
62
|
oveq1i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 64 |
4 30 11
|
hvadd32i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 65 |
5 1
|
hvmulcli |
⊢ ( 2 ·ℎ 𝐴 ) ∈ ℋ |
| 66 |
65 6
|
hvsubvali |
⊢ ( ( 2 ·ℎ 𝐴 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 67 |
63 64 66
|
3eqtr4i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 2 ·ℎ 𝐴 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 68 |
33
|
oveq1i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) |
| 69 |
5 1 3
|
hvsubdistr1i |
⊢ ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐴 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 70 |
67 68 69
|
3eqtr4i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) |
| 71 |
70
|
fveq2i |
⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( normℎ ‘ ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 72 |
5 16
|
norm-iii-i |
⊢ ( normℎ ‘ ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) ) = ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 73 |
53
|
oveq1i |
⊢ ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 74 |
71 72 73
|
3eqtri |
⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 75 |
74
|
oveq1i |
⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ↑ 2 ) |
| 76 |
17
|
recni |
⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℂ |
| 77 |
5 76
|
sqmuli |
⊢ ( ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 78 |
59
|
oveq1i |
⊢ ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 79 |
75 77 78
|
3eqtri |
⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 80 |
61 79
|
oveq12i |
⊢ ( ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) ) = ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 81 |
28 80
|
eqtr4i |
⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) = ( ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) ) |
| 82 |
7 11
|
normpari |
⊢ ( ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 83 |
81 82
|
eqtri |
⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 84 |
83
|
oveq1i |
⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) / 2 ) |
| 85 |
5 10
|
mulcli |
⊢ ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 86 |
5 14
|
mulcli |
⊢ ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ∈ ℂ |
| 87 |
85 86 5 26
|
divdiri |
⊢ ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) / 2 ) + ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) / 2 ) ) |
| 88 |
10 5 26
|
divcan3i |
⊢ ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) / 2 ) = ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) |
| 89 |
14 5 26
|
divcan3i |
⊢ ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) / 2 ) = ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) |
| 90 |
88 89
|
oveq12i |
⊢ ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) / 2 ) + ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) / 2 ) ) = ( ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) |
| 91 |
84 87 90
|
3eqtri |
⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) |
| 92 |
15 19 5 26
|
div23i |
⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 93 |
|
4d2e2 |
⊢ ( 4 / 2 ) = 2 |
| 94 |
93
|
oveq1i |
⊢ ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 95 |
92 94
|
eqtri |
⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 96 |
15 24 5 26
|
div23i |
⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 97 |
93
|
oveq1i |
⊢ ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 98 |
96 97
|
eqtri |
⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 99 |
95 98
|
oveq12i |
⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) + ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) ) = ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 100 |
27 91 99
|
3eqtr3i |
⊢ ( ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 101 |
10 14 100
|
mvlladdi |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) − ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) |