| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normpar.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
normpar.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
1 2
|
hvsubcli |
⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 4 |
3
|
normsqi |
⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) |
| 5 |
1 2
|
hvaddcli |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 6 |
5
|
normsqi |
⊢ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) |
| 7 |
4 6
|
oveq12i |
⊢ ( ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) |
| 8 |
1
|
normsqi |
⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
| 9 |
8
|
oveq2i |
⊢ ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( 2 · ( 𝐴 ·ih 𝐴 ) ) |
| 10 |
1 1
|
hicli |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
| 11 |
10
|
2timesi |
⊢ ( 2 · ( 𝐴 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) |
| 12 |
9 11
|
eqtri |
⊢ ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) |
| 13 |
2
|
normsqi |
⊢ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) |
| 14 |
13
|
oveq2i |
⊢ ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( 2 · ( 𝐵 ·ih 𝐵 ) ) |
| 15 |
2 2
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 16 |
15
|
2timesi |
⊢ ( 2 · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 17 |
14 16
|
eqtri |
⊢ ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 18 |
12 17
|
oveq12i |
⊢ ( ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 19 |
1 2 1 2
|
normlem9 |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 20 |
10 15
|
addcli |
⊢ ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 21 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 22 |
2 1
|
hicli |
⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
| 23 |
21 22
|
addcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 24 |
20 23
|
negsubi |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 25 |
19 24
|
eqtr4i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 26 |
1 2 1 2
|
normlem8 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 27 |
25 26
|
oveq12i |
⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) + ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) |
| 28 |
23
|
negcli |
⊢ - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 29 |
20 28 20 23
|
add42i |
⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) + ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) |
| 30 |
23
|
negidi |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = 0 |
| 31 |
30
|
oveq2i |
⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + 0 ) |
| 32 |
20 20
|
addcli |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℂ |
| 33 |
32
|
addridi |
⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + 0 ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 34 |
10 15 10 15
|
add4i |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 35 |
31 33 34
|
3eqtri |
⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 36 |
27 29 35
|
3eqtri |
⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 37 |
18 36
|
eqtr4i |
⊢ ( ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) |
| 38 |
7 37
|
eqtr4i |
⊢ ( ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |