Metamath Proof Explorer


Theorem normpari

Description: Parallelogram law for norms. Remark 3.4(B) of Beran p. 98. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normpar.1 𝐴 ∈ ℋ
normpar.2 𝐵 ∈ ℋ
Assertion normpari ( ( ( norm ‘ ( 𝐴 𝐵 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) ) = ( ( 2 · ( ( norm𝐴 ) ↑ 2 ) ) + ( 2 · ( ( norm𝐵 ) ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 normpar.1 𝐴 ∈ ℋ
2 normpar.2 𝐵 ∈ ℋ
3 1 2 hvsubcli ( 𝐴 𝐵 ) ∈ ℋ
4 3 normsqi ( ( norm ‘ ( 𝐴 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 𝐵 ) ·ih ( 𝐴 𝐵 ) )
5 1 2 hvaddcli ( 𝐴 + 𝐵 ) ∈ ℋ
6 5 normsqi ( ( norm ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) ·ih ( 𝐴 + 𝐵 ) )
7 4 6 oveq12i ( ( ( norm ‘ ( 𝐴 𝐵 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 𝐵 ) ·ih ( 𝐴 𝐵 ) ) + ( ( 𝐴 + 𝐵 ) ·ih ( 𝐴 + 𝐵 ) ) )
8 1 normsqi ( ( norm𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 )
9 8 oveq2i ( 2 · ( ( norm𝐴 ) ↑ 2 ) ) = ( 2 · ( 𝐴 ·ih 𝐴 ) )
10 1 1 hicli ( 𝐴 ·ih 𝐴 ) ∈ ℂ
11 10 2timesi ( 2 · ( 𝐴 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) )
12 9 11 eqtri ( 2 · ( ( norm𝐴 ) ↑ 2 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) )
13 2 normsqi ( ( norm𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 )
14 13 oveq2i ( 2 · ( ( norm𝐵 ) ↑ 2 ) ) = ( 2 · ( 𝐵 ·ih 𝐵 ) )
15 2 2 hicli ( 𝐵 ·ih 𝐵 ) ∈ ℂ
16 15 2timesi ( 2 · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) )
17 14 16 eqtri ( 2 · ( ( norm𝐵 ) ↑ 2 ) ) = ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) )
18 12 17 oveq12i ( ( 2 · ( ( norm𝐴 ) ↑ 2 ) ) + ( 2 · ( ( norm𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) )
19 1 2 1 2 normlem9 ( ( 𝐴 𝐵 ) ·ih ( 𝐴 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) )
20 10 15 addcli ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ
21 1 2 hicli ( 𝐴 ·ih 𝐵 ) ∈ ℂ
22 2 1 hicli ( 𝐵 ·ih 𝐴 ) ∈ ℂ
23 21 22 addcli ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ
24 20 23 negsubi ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) )
25 19 24 eqtr4i ( ( 𝐴 𝐵 ) ·ih ( 𝐴 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) )
26 1 2 1 2 normlem8 ( ( 𝐴 + 𝐵 ) ·ih ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) )
27 25 26 oveq12i ( ( ( 𝐴 𝐵 ) ·ih ( 𝐴 𝐵 ) ) + ( ( 𝐴 + 𝐵 ) ·ih ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) + ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) )
28 23 negcli - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ
29 20 28 20 23 add42i ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) + ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) )
30 23 negidi ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = 0
31 30 oveq2i ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + 0 )
32 20 20 addcli ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℂ
33 32 addid1i ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + 0 ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) )
34 10 15 10 15 add4i ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) )
35 31 33 34 3eqtri ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) )
36 27 29 35 3eqtri ( ( ( 𝐴 𝐵 ) ·ih ( 𝐴 𝐵 ) ) + ( ( 𝐴 + 𝐵 ) ·ih ( 𝐴 + 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) )
37 18 36 eqtr4i ( ( 2 · ( ( norm𝐴 ) ↑ 2 ) ) + ( 2 · ( ( norm𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 𝐵 ) ·ih ( 𝐴 𝐵 ) ) + ( ( 𝐴 + 𝐵 ) ·ih ( 𝐴 + 𝐵 ) ) )
38 7 37 eqtr4i ( ( ( norm ‘ ( 𝐴 𝐵 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) ) = ( ( 2 · ( ( norm𝐴 ) ↑ 2 ) ) + ( 2 · ( ( norm𝐵 ) ↑ 2 ) ) )