| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normcl | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 2 | 1 | resqcld | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 3 | 2 | recnd | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 4 | 3 | addridd | ⊢ ( 𝐴  ∈   ℋ  →  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  0 )  =  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  0 )  =  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 6 |  | normcl | ⊢ ( 𝐵  ∈   ℋ  →  ( normℎ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 7 | 6 | sqge0d | ⊢ ( 𝐵  ∈   ℋ  →  0  ≤  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  0  ≤  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) | 
						
							| 9 | 6 | resqcld | ⊢ ( 𝐵  ∈   ℋ  →  ( ( normℎ ‘ 𝐵 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 10 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 11 |  | leadd2 | ⊢ ( ( 0  ∈  ℝ  ∧  ( ( normℎ ‘ 𝐵 ) ↑ 2 )  ∈  ℝ  ∧  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ∈  ℝ )  →  ( 0  ≤  ( ( normℎ ‘ 𝐵 ) ↑ 2 )  ↔  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  0 )  ≤  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) | 
						
							| 12 | 10 11 | mp3an1 | ⊢ ( ( ( ( normℎ ‘ 𝐵 ) ↑ 2 )  ∈  ℝ  ∧  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ∈  ℝ )  →  ( 0  ≤  ( ( normℎ ‘ 𝐵 ) ↑ 2 )  ↔  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  0 )  ≤  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) | 
						
							| 13 | 9 2 12 | syl2anr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 0  ≤  ( ( normℎ ‘ 𝐵 ) ↑ 2 )  ↔  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  0 )  ≤  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) | 
						
							| 14 | 8 13 | mpbid | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  0 )  ≤  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 15 | 5 14 | eqbrtrrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≤  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐴  ·ih  𝐵 )  =  0 )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≤  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 17 |  | normpyth | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·ih  𝐵 )  =  0  →  ( ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ↑ 2 )  =  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐴  ·ih  𝐵 )  =  0 )  →  ( ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ↑ 2 )  =  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  +  ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 19 | 16 18 | breqtrrd | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐴  ·ih  𝐵 )  =  0 )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ↑ 2 ) ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·ih  𝐵 )  =  0  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 21 | 1 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( normℎ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 22 |  | hvaddcl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  +ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 23 |  | normcl | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ∈   ℋ  →  ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) )  ∈  ℝ ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) )  ∈  ℝ ) | 
						
							| 25 |  | normge0 | ⊢ ( 𝐴  ∈   ℋ  →  0  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  0  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 27 |  | normge0 | ⊢ ( ( 𝐴  +ℎ  𝐵 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ) | 
						
							| 28 | 22 27 | syl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  0  ≤  ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ) | 
						
							| 29 | 21 24 26 28 | le2sqd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( normℎ ‘ 𝐴 )  ≤  ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) )  ↔  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 30 | 20 29 | sylibrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·ih  𝐵 )  =  0  →  ( normℎ ‘ 𝐴 )  ≤  ( normℎ ‘ ( 𝐴  +ℎ  𝐵 ) ) ) ) |