| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( normℎ ‘ 𝐴 )  =  ( normℎ ‘ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( ( normℎ ‘ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ↑ 2 ) ) | 
						
							| 3 |  | id | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) | 
						
							| 4 | 3 3 | oveq12d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( 𝐴  ·ih  𝐴 )  =  ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  ·ih  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ) | 
						
							| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 )  ↔  ( ( normℎ ‘ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ↑ 2 )  =  ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  ·ih  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ) ) | 
						
							| 6 |  | ifhvhv0 | ⊢ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  ∈   ℋ | 
						
							| 7 | 6 | normsqi | ⊢ ( ( normℎ ‘ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) ↑ 2 )  =  ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  ·ih  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) ) | 
						
							| 8 | 5 7 | dedth | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) ) |