| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normcl.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | normval | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( normℎ ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 4 | 3 | oveq1i | ⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 ) | 
						
							| 5 |  | hiidge0 | ⊢ ( 𝐴  ∈   ℋ  →  0  ≤  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 6 | 1 5 | ax-mp | ⊢ 0  ≤  ( 𝐴  ·ih  𝐴 ) | 
						
							| 7 |  | hiidrcl | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  ·ih  𝐴 )  ∈  ℝ ) | 
						
							| 8 | 1 7 | ax-mp | ⊢ ( 𝐴  ·ih  𝐴 )  ∈  ℝ | 
						
							| 9 | 8 | sqsqrti | ⊢ ( 0  ≤  ( 𝐴  ·ih  𝐴 )  →  ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 10 | 6 9 | ax-mp | ⊢ ( ( √ ‘ ( 𝐴  ·ih  𝐴 ) ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) | 
						
							| 11 | 4 10 | eqtri | ⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) |