Step |
Hyp |
Ref |
Expression |
1 |
|
normcl.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
normval |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
4 |
3
|
oveq1i |
⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) |
5 |
|
hiidge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |
6 |
1 5
|
ax-mp |
⊢ 0 ≤ ( 𝐴 ·ih 𝐴 ) |
7 |
|
hiidrcl |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
8 |
1 7
|
ax-mp |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℝ |
9 |
8
|
sqsqrti |
⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
10 |
6 9
|
ax-mp |
⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
11 |
4 10
|
eqtri |
⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |