Metamath Proof Explorer


Theorem normsqi

Description: The square of a norm. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypothesis normcl.1 𝐴 ∈ ℋ
Assertion normsqi ( ( norm𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 )

Proof

Step Hyp Ref Expression
1 normcl.1 𝐴 ∈ ℋ
2 normval ( 𝐴 ∈ ℋ → ( norm𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) )
3 1 2 ax-mp ( norm𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) )
4 3 oveq1i ( ( norm𝐴 ) ↑ 2 ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 )
5 hiidge0 ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) )
6 1 5 ax-mp 0 ≤ ( 𝐴 ·ih 𝐴 )
7 hiidrcl ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ )
8 1 7 ax-mp ( 𝐴 ·ih 𝐴 ) ∈ ℝ
9 8 sqsqrti ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) )
10 6 9 ax-mp ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 )
11 4 10 eqtri ( ( norm𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 )