| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvoveq1 | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( normℎ ‘ ( 𝐴  −ℎ  𝐵 ) )  =  ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  𝐵 ) ) ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ( normℎ ‘ ( 𝐴  −ℎ  𝐵 ) )  =  0  ↔  ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  𝐵 ) )  =  0 ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( 𝐴  =  𝐵  ↔  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  =  𝐵 ) ) | 
						
							| 4 | 2 3 | bibi12d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ( ( normℎ ‘ ( 𝐴  −ℎ  𝐵 ) )  =  0  ↔  𝐴  =  𝐵 )  ↔  ( ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  𝐵 ) )  =  0  ↔  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  =  𝐵 ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  𝐵 )  =  ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) ) | 
						
							| 6 | 5 | fveqeq2d | ⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  𝐵 ) )  =  0  ↔  ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  =  0 ) ) | 
						
							| 7 |  | eqeq2 | ⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  =  𝐵  ↔  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) ) | 
						
							| 8 | 6 7 | bibi12d | ⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( ( ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  𝐵 ) )  =  0  ↔  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  =  𝐵 )  ↔  ( ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  =  0  ↔  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) ) ) | 
						
							| 9 |  | ifhvhv0 | ⊢ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  ∈   ℋ | 
						
							| 10 |  | ifhvhv0 | ⊢ if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  ∈   ℋ | 
						
							| 11 | 9 10 | normsub0i | ⊢ ( ( normℎ ‘ ( if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  −ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  =  0  ↔  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) | 
						
							| 12 | 4 8 11 | dedth2h | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( normℎ ‘ ( 𝐴  −ℎ  𝐵 ) )  =  0  ↔  𝐴  =  𝐵 ) ) |