| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltso |
⊢ <s Or No |
| 2 |
|
sotrine |
⊢ ( ( <s Or No ∧ ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴 ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴 ) ) ) |
| 4 |
|
nosepdmlem |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |
| 5 |
4
|
3expa |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴 ) → 𝐵 ∈ No ) |
| 7 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴 ) → 𝐴 ∈ No ) |
| 8 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴 ) → 𝐵 <s 𝐴 ) |
| 9 |
|
nosepdmlem |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 <s 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ∈ ( dom 𝐵 ∪ dom 𝐴 ) ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ∈ ( dom 𝐵 ∪ dom 𝐴 ) ) |
| 11 |
|
necom |
⊢ ( ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) ) |
| 12 |
11
|
rabbii |
⊢ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } = { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } |
| 13 |
12
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } |
| 14 |
|
uncom |
⊢ ( dom 𝐴 ∪ dom 𝐵 ) = ( dom 𝐵 ∪ dom 𝐴 ) |
| 15 |
10 13 14
|
3eltr4g |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |
| 16 |
5 15
|
jaodan |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴 ) ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |
| 17 |
16
|
ex |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) ) |
| 18 |
3 17
|
sylbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≠ 𝐵 → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) ) |
| 19 |
18
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |