| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nosupbnd1.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 2 |
|
simp2l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝐴 ⊆ No ) |
| 3 |
|
simp3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ∈ 𝐴 ) |
| 4 |
2 3
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ∈ No ) |
| 5 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
| 6 |
5
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝑆 ∈ No ) |
| 7 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
| 8 |
6 7
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → dom 𝑆 ∈ On ) |
| 9 |
|
noreson |
⊢ ( ( 𝑈 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑈 ↾ dom 𝑆 ) ∈ No ) |
| 10 |
4 8 9
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( 𝑈 ↾ dom 𝑆 ) ∈ No ) |
| 11 |
|
dmres |
⊢ dom ( 𝑈 ↾ dom 𝑆 ) = ( dom 𝑆 ∩ dom 𝑈 ) |
| 12 |
|
inss1 |
⊢ ( dom 𝑆 ∩ dom 𝑈 ) ⊆ dom 𝑆 |
| 13 |
11 12
|
eqsstri |
⊢ dom ( 𝑈 ↾ dom 𝑆 ) ⊆ dom 𝑆 |
| 14 |
13
|
a1i |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → dom ( 𝑈 ↾ dom 𝑆 ) ⊆ dom 𝑆 ) |
| 15 |
|
ssidd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → dom 𝑆 ⊆ dom 𝑆 ) |
| 16 |
|
iffalse |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 17 |
1 16
|
eqtrid |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 18 |
17
|
dmeqd |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 19 |
|
iotaex |
⊢ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ∈ V |
| 20 |
|
eqid |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) |
| 21 |
19 20
|
dmmpti |
⊢ dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } |
| 22 |
18 21
|
eqtrdi |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) |
| 23 |
22
|
eleq2d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( ℎ ∈ dom 𝑆 ↔ ℎ ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) ) |
| 24 |
|
vex |
⊢ ℎ ∈ V |
| 25 |
|
eleq1w |
⊢ ( 𝑦 = ℎ → ( 𝑦 ∈ dom 𝑢 ↔ ℎ ∈ dom 𝑢 ) ) |
| 26 |
|
suceq |
⊢ ( 𝑦 = ℎ → suc 𝑦 = suc ℎ ) |
| 27 |
26
|
reseq2d |
⊢ ( 𝑦 = ℎ → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc ℎ ) ) |
| 28 |
26
|
reseq2d |
⊢ ( 𝑦 = ℎ → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc ℎ ) ) |
| 29 |
27 28
|
eqeq12d |
⊢ ( 𝑦 = ℎ → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) |
| 30 |
29
|
imbi2d |
⊢ ( 𝑦 = ℎ → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) |
| 31 |
30
|
ralbidv |
⊢ ( 𝑦 = ℎ → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) |
| 32 |
25 31
|
anbi12d |
⊢ ( 𝑦 = ℎ → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( ℎ ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) |
| 33 |
32
|
rexbidv |
⊢ ( 𝑦 = ℎ → ( ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( ℎ ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) |
| 34 |
|
dmeq |
⊢ ( 𝑢 = 𝑝 → dom 𝑢 = dom 𝑝 ) |
| 35 |
34
|
eleq2d |
⊢ ( 𝑢 = 𝑝 → ( ℎ ∈ dom 𝑢 ↔ ℎ ∈ dom 𝑝 ) ) |
| 36 |
|
breq2 |
⊢ ( 𝑢 = 𝑝 → ( 𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝 ) ) |
| 37 |
36
|
notbid |
⊢ ( 𝑢 = 𝑝 → ( ¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝 ) ) |
| 38 |
|
reseq1 |
⊢ ( 𝑢 = 𝑝 → ( 𝑢 ↾ suc ℎ ) = ( 𝑝 ↾ suc ℎ ) ) |
| 39 |
38
|
eqeq1d |
⊢ ( 𝑢 = 𝑝 → ( ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ↔ ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) |
| 40 |
37 39
|
imbi12d |
⊢ ( 𝑢 = 𝑝 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ↔ ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) |
| 41 |
40
|
ralbidv |
⊢ ( 𝑢 = 𝑝 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) |
| 42 |
35 41
|
anbi12d |
⊢ ( 𝑢 = 𝑝 → ( ( ℎ ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ↔ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) |
| 43 |
42
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( ℎ ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) |
| 44 |
33 43
|
bitrdi |
⊢ ( 𝑦 = ℎ → ( ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) |
| 45 |
24 44
|
elab |
⊢ ( ℎ ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐴 ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) |
| 46 |
23 45
|
bitrdi |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( ℎ ∈ dom 𝑆 ↔ ∃ 𝑝 ∈ 𝐴 ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( ℎ ∈ dom 𝑆 ↔ ∃ 𝑝 ∈ 𝐴 ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) |
| 48 |
|
simpl1 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
| 49 |
|
simpl2 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
| 50 |
|
simprl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → 𝑝 ∈ 𝐴 ) |
| 51 |
|
simprrl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ℎ ∈ dom 𝑝 ) |
| 52 |
|
simprrr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) |
| 53 |
1
|
nosupres |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑝 ∈ 𝐴 ∧ ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) → ( 𝑆 ↾ suc ℎ ) = ( 𝑝 ↾ suc ℎ ) ) |
| 54 |
48 49 50 51 52 53
|
syl113anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( 𝑆 ↾ suc ℎ ) = ( 𝑝 ↾ suc ℎ ) ) |
| 55 |
|
simpl2l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → 𝐴 ⊆ No ) |
| 56 |
55 50
|
sseldd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → 𝑝 ∈ No ) |
| 57 |
4
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → 𝑈 ∈ No ) |
| 58 |
|
sltso |
⊢ <s Or No |
| 59 |
|
soasym |
⊢ ( ( <s Or No ∧ ( 𝑝 ∈ No ∧ 𝑈 ∈ No ) ) → ( 𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝 ) ) |
| 60 |
58 59
|
mpan |
⊢ ( ( 𝑝 ∈ No ∧ 𝑈 ∈ No ) → ( 𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝 ) ) |
| 61 |
56 57 60
|
syl2anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( 𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝 ) ) |
| 62 |
|
simpl3 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → 𝑈 ∈ 𝐴 ) |
| 63 |
|
breq1 |
⊢ ( 𝑣 = 𝑈 → ( 𝑣 <s 𝑝 ↔ 𝑈 <s 𝑝 ) ) |
| 64 |
63
|
notbid |
⊢ ( 𝑣 = 𝑈 → ( ¬ 𝑣 <s 𝑝 ↔ ¬ 𝑈 <s 𝑝 ) ) |
| 65 |
|
reseq1 |
⊢ ( 𝑣 = 𝑈 → ( 𝑣 ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) |
| 66 |
65
|
eqeq2d |
⊢ ( 𝑣 = 𝑈 → ( ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ↔ ( 𝑝 ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) ) |
| 67 |
64 66
|
imbi12d |
⊢ ( 𝑣 = 𝑈 → ( ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ↔ ( ¬ 𝑈 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) ) ) |
| 68 |
67
|
rspcv |
⊢ ( 𝑈 ∈ 𝐴 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) → ( ¬ 𝑈 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) ) ) |
| 69 |
62 52 68
|
sylc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( ¬ 𝑈 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) ) |
| 70 |
61 69
|
syld |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( 𝑝 <s 𝑈 → ( 𝑝 ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) ∧ 𝑝 <s 𝑈 ) → ( 𝑝 ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) |
| 72 |
|
nodmon |
⊢ ( 𝑝 ∈ No → dom 𝑝 ∈ On ) |
| 73 |
56 72
|
syl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → dom 𝑝 ∈ On ) |
| 74 |
|
onelon |
⊢ ( ( dom 𝑝 ∈ On ∧ ℎ ∈ dom 𝑝 ) → ℎ ∈ On ) |
| 75 |
73 51 74
|
syl2anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ℎ ∈ On ) |
| 76 |
|
onsucb |
⊢ ( ℎ ∈ On ↔ suc ℎ ∈ On ) |
| 77 |
75 76
|
sylib |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → suc ℎ ∈ On ) |
| 78 |
|
noreson |
⊢ ( ( 𝑈 ∈ No ∧ suc ℎ ∈ On ) → ( 𝑈 ↾ suc ℎ ) ∈ No ) |
| 79 |
57 77 78
|
syl2anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( 𝑈 ↾ suc ℎ ) ∈ No ) |
| 80 |
|
sonr |
⊢ ( ( <s Or No ∧ ( 𝑈 ↾ suc ℎ ) ∈ No ) → ¬ ( 𝑈 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 81 |
58 80
|
mpan |
⊢ ( ( 𝑈 ↾ suc ℎ ) ∈ No → ¬ ( 𝑈 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 82 |
79 81
|
syl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ¬ ( 𝑈 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) ∧ 𝑝 <s 𝑈 ) → ¬ ( 𝑈 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 84 |
71 83
|
eqnbrtrd |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) ∧ 𝑝 <s 𝑈 ) → ¬ ( 𝑝 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 85 |
84
|
ex |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( 𝑝 <s 𝑈 → ¬ ( 𝑝 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) ) |
| 86 |
|
sltres |
⊢ ( ( 𝑝 ∈ No ∧ 𝑈 ∈ No ∧ suc ℎ ∈ On ) → ( ( 𝑝 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) → 𝑝 <s 𝑈 ) ) |
| 87 |
56 57 77 86
|
syl3anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( ( 𝑝 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) → 𝑝 <s 𝑈 ) ) |
| 88 |
87
|
con3d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ( ¬ 𝑝 <s 𝑈 → ¬ ( 𝑝 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) ) |
| 89 |
85 88
|
pm2.61d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ¬ ( 𝑝 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 90 |
54 89
|
eqnbrtrd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) ) ) → ¬ ( 𝑆 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 91 |
90
|
rexlimdvaa |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( ∃ 𝑝 ∈ 𝐴 ( ℎ ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc ℎ ) = ( 𝑣 ↾ suc ℎ ) ) ) → ¬ ( 𝑆 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) ) |
| 92 |
47 91
|
sylbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( ℎ ∈ dom 𝑆 → ¬ ( 𝑆 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) ) |
| 93 |
92
|
imp |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ℎ ∈ dom 𝑆 ) → ¬ ( 𝑆 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) |
| 94 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
| 95 |
|
ordsucss |
⊢ ( Ord dom 𝑆 → ( ℎ ∈ dom 𝑆 → suc ℎ ⊆ dom 𝑆 ) ) |
| 96 |
6 94 95
|
3syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( ℎ ∈ dom 𝑆 → suc ℎ ⊆ dom 𝑆 ) ) |
| 97 |
96
|
imp |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ℎ ∈ dom 𝑆 ) → suc ℎ ⊆ dom 𝑆 ) |
| 98 |
97
|
resabs1d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ℎ ∈ dom 𝑆 ) → ( ( 𝑈 ↾ dom 𝑆 ) ↾ suc ℎ ) = ( 𝑈 ↾ suc ℎ ) ) |
| 99 |
98
|
breq2d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ℎ ∈ dom 𝑆 ) → ( ( 𝑆 ↾ suc ℎ ) <s ( ( 𝑈 ↾ dom 𝑆 ) ↾ suc ℎ ) ↔ ( 𝑆 ↾ suc ℎ ) <s ( 𝑈 ↾ suc ℎ ) ) ) |
| 100 |
93 99
|
mtbird |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ℎ ∈ dom 𝑆 ) → ¬ ( 𝑆 ↾ suc ℎ ) <s ( ( 𝑈 ↾ dom 𝑆 ) ↾ suc ℎ ) ) |
| 101 |
100
|
ralrimiva |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ∀ ℎ ∈ dom 𝑆 ¬ ( 𝑆 ↾ suc ℎ ) <s ( ( 𝑈 ↾ dom 𝑆 ) ↾ suc ℎ ) ) |
| 102 |
|
noresle |
⊢ ( ( ( ( 𝑈 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) ∧ ( dom ( 𝑈 ↾ dom 𝑆 ) ⊆ dom 𝑆 ∧ dom 𝑆 ⊆ dom 𝑆 ∧ ∀ ℎ ∈ dom 𝑆 ¬ ( 𝑆 ↾ suc ℎ ) <s ( ( 𝑈 ↾ dom 𝑆 ) ↾ suc ℎ ) ) ) → ¬ 𝑆 <s ( 𝑈 ↾ dom 𝑆 ) ) |
| 103 |
10 6 14 15 101 102
|
syl23anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ¬ 𝑆 <s ( 𝑈 ↾ dom 𝑆 ) ) |